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Abstract 
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Wireless broadband systems based on Orthogonal Frequency Division Multiplexing (OFDM) 
are being introduced to meet demands for high data transfer rates. In multiple users systems, 
the available bandwidth has to be shared efficiently by several users. The radio channel qual-
ity will fluctuate, or fade, as users move. Fading complicates the resource allocation, but 
channel prediction may alleviate this problem. A flexible and computationally inexpensive 
state space representation of fading channels is here used in conjunction with a Kalman filter, 
operating on special-purpose reference signals, to track and predict fading OFDM channels. 

The thesis investigates key design and performance aspects of such estimators. Taking a 
probabilistic approach, we interpret the output of the Kalman filter as a full representation of a 
state of knowledge about the fading channels, given whatever information is at hand. For 
systems analysis, this permits conclusions to be drawn about channel estimation and predic-
tion performance based on only vague information about the fading characteristics of the 
channel rather than on actual channel measurements. This is an alternative to conducting 
classic simulation studies. Various reference signal designs are studied and good design choi-
ces are recommended. Superimposed reference signal schemes are also proposed for and 
evaluated in cases where multiple signals are received, e.g. in multi-user (MU), multi-input 
multioutput (MIMO), or coordinated multi-point (CoMP) settings. By using time-varying 
reference signals, channel estimation and prediction performance is shown to be improved 
considerably in crowded frequency bands. The variation of prediction performance with 
prediction range and Doppler spectrum characteristics is investigated. For link adaptation, we 
derive the appropriate metric on which adaptation decisions should be used. The probability 
density function for this metric is derived for general MIMO channels. Link adaptation is 
studied for a single link system when channel prediction and estimation errors are present, 
both for uncoded systems and systems using large block codes with soft decoders. Various 
aspects of channel model acquisition are addressed by conducting studies on measured chan-
nels. Owing to the use of special matrix structures and fast convergence to time-invariant or 
periodic solutions, we find the Kalman filter complexity to be reasonable for future imple-
mentation. Finally, expressions for the impact of modelling errors are derived and used to 
study the impact of modelling errors on channel prediction performance in some example 
cases. 
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Sammandrag

Antalet enheter som ansluter till Internet via mobila datanät växer snabbt
och efterfr̊agan p̊a högre dataöverföringshastigheter ökar. Tr̊adlösa bredbands-
system baserade p̊a överföringstekniken Orthogonal Frequency Division Mul-
tiplexing (OFDM) införs nu för att uppfylla dessa krav. I tr̊adlösa fler-
användarsystem m̊aste den tillgängliga bandbredden delas effektivt mellan
flera användare. Dessutom kommer mobila användare som rör sig genom det
st̊aende v̊agmönster som skapas av den utsända radiov̊agen fr̊an basstationer
att erfara att den mottagna signalstyrkan varierar, fädar, över tid. Fr̊agan
om hur resurser ska fördelas mellan användare kompliceras av fädning, men
problemet kan till viss del förenklas genom att l̊ata användarna förutsäga
eller prediktera den fädande radiokanalen. Kanalprediktion är det huvudsak-
liga temat för denna avhandling.

En flexibel och beräkningsmässigt relativt sn̊al s.k. tillst̊andsrepresenta-
tion av fädande radiokanaler används här i kombination med ett kalmanfilter,
vilket med hjälp av speciella referenssignaler används b̊ade för att prediktera
och följa fädande OFDM-kanaler. Avhandlingen undersöker centrala design-
och prestandaaspekter för denna typ av kanalföljare och -prediktorer. Resul-
taten fr̊an kalmanfiltret tolkas här som en fullständig representation av den
kunskap om de fädande kanalerna som brusiga mätningar av referenssignaler-
na ger. Som ett alternativ till att utföra klassiska simuleringsstudier till̊ater
detta oss att beräkna kanalföljarens och kanalprediktorns prestanda baserat
endast p̊a vag information om fädningens statistiska egenskaper.

Olika konfigurationer för referenssignalerna studeras och rekommenda-
tioner för goda designval presenteras. Det ramverk för kanalmodellering som
föresl̊as till̊ater att referenssignaler fr̊an olika sändarantenner överlagras p̊a
varandra i den mottagna signalen. Detta medför att andelen signalband-
bredd som upptas av referenssignaler kan h̊allas p̊a en rimlig niv̊a, trots att
antalet signaler som samsas om frekvensutrymmet är stort. Vi undersöker
typer av system där flera signaler tas emot, s̊asom t.ex. fleranvändarsystem,
flerantennsystem (MIMO) eller koordinerade flerpunktsändningar (CoMP),
och studerar hur olika val av referenssignaler p̊averkar prediktionsprestanda.
Genom att variera referenssignalerna över tid kan kanalföljnings- och predik-
tionsprestanda förbättras avsevärt i fall d̊a m̊anga signaler m̊aste samsas om
samma frekvensband. Vi undersöker även hur prediktionsprestanda beror av
kanalens dopplerspektrum samt prediktionshorisont.

Vi beaktar länkadaption och definierar det m̊att som bör ligga till grund
för länkadaptionsbeslut. Sannolikhetsfördelningen för detta m̊att härleds för
generella MIMO-kanaler. Realistiska kanalföljare och kanalprediktorer ger
alltid upphov till ett visst m̊att av felgissningar. Länkadaptionsprestanda
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utvärderas i ett enanvändarsystem där b̊ade skattningsfel och prediktionsfel
föreligger. B̊ade okodade system och kodade system som använder sig av
mjuka avkodare studeras.

Vi studerar mätningar av fädande radiokanaler uppmätta vid l̊ag for-
donshastighet i stadsmiljö. Studien görs med avseende p̊a kanalernas tidsdy-
namik och frekvensegenskaper, liksom p̊a deras förm̊aga att följas samtidigt
d̊a överlagrade referenssignaler används. Baserat p̊a dessa resultat ges rek-
ommendationer för hur modellparametrar för kanalmodeller bör skattas.

Den numeriska komplexitet för de föreslagna kalman-baserade algoritmer-
na utvärderas. Goda konvergensegenskaper i kombination med att speciella
matrisstrukturer används ger en komplexitet som ligger p̊a en niv̊a som är
rimlig för framtida implementering av de föreslagna algoritmerna.

Om de kanalermodeller som används inte beskriver de verkliga kanalernas
fädningsegenskaper p̊a ett tillfredsställande sätt s̊a kommer kanalprediktion-
sprestanda att avta. Vi härleder teoretiska uttryck för effekten av s̊adana
modellfel och studerar n̊agra konkreta fall.
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Notation and symbols

A,A, Λ Boldface capital letters, caligraphic capital letters,
and Greek capital letters denote matrices.

a, α Boldface letters denote column vectors.

A, a, α Letters in normal font denote scalars or sets.

A∗ The conjugate transpose of A.

AT The transpose of A.

A−∗ The conjugate transpose of the inverse of A.

A > 0 The matrix A is positive definite.

|A| < 1 All eigenvalues of A are strictly inside the unit circle.

diag(a1, a2, . . .) A diagonal matrix with diagonal elements
a1, a2, . . ..

diag(a) A diagonal matrix whose diagonal is given by the
vector a.

diag(A1,A2, . . .) A block-diagonal matrix with diagonal blocks
A1,A2, . . ..

circ(aT ) A circulant matrix, defined in (2.4.2), whose first
row is aT .

Iα The α× α identity matrix.

|A| The cardinality of a set A.

1α×β A α× β matrix containing only ones.

0α×β A α× β matrix containing only zeros.

A�B Element-wise multiplication.

A�B Element-wise division.

A[i, j] Element {i, j} of the matrix A.

CN (a; â,Ra) The multivariate circular symmetric complex
Gaussian distribution with free variable a, mean
value â, and covariance matrix Ra, defined in Ap-
pendix (3.B.1).

J0(a) The zeroth order Bessel function of the first kind.

I0(a) The zeroth order modified Bessel function of the
first kind.

χ2(z; |â|2, σ2
a) The non-central χ2-distribution with two degrees

of freedom, defined in Appendix (4.A).
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p(a|D, I) The probability density function of a given data D
and information I.

E{a|D, I} The expected value of a given data D and infor-
mation I. E{a|D, I} =

∫
ap(a|D, I)da, where the

integration is taken over the entire domain of a.

δij The Kronecker delta function. δij = 1 if i = j and
zero otherwise.

δ(a) The Dirac delta distribution.
∫

R
δ(a)da = 1 and

δ(a) = 0 if a �= 0.

L{a0, . . . , at} The linear vector space spanned by a0, . . . , at.

a ∈ A a is a member of the set A.
j The imaginary unit

√
−1.
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ARMA Auto-Regressive Moving Average
AWGN Additive White Gaussian Noise
BA Block Allocation
BER Bit Error Rate
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CoMP Coordinated Multi-Point
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EDGE Enhanced Data rates for GSM Evolution
EM Expectation Maximization
ESPRIT Estimation of Signal Parameters via
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FDMA Frequency Division Multiple Access
FER Frame Error Rate
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pdf probability density function
PDP Power Delay Profile
PSAM Pilot Symbol Assisted Modulation
QPSK Quadrature Phase Shift Keying
RB Resource Block
RCP-BLDPC Rate-Compatible Punctured Block-circulant Low

Density Parity Check
RLS Recursive Least Squares
SISO Single-Input Single-Output
SNR Signal-to-Noise1Ratio
TDD Time Division Duplex
TDMA Time Division Multiple Access
UE User Equipment
UTRA Universal Terrestrial Radio Access
WCDMA Wideband Code Division Multiple Access
WiMAX Worldwide Interoperability for Microwave Access
WINNER Wireless World Initiative New Radio

1Interference is assumed to be included in the noise.



Chapter 1
Introduction

Consider the channel prediction situation illustrated in Figure 1.1. Two
mobile radio receivers, e.g. pedestrians carrying mobile phones or vehicles
equipped with radio receivers, receive a signal transmitted by a central an-
tenna. The transmitted wave is assumed to occupy a very narrow frequency
band, which means that it is practically a single tone. The wave bounces off
the ground, trees, buildings, and so forth, and interferes with itself so that
a standing wave pattern is formed in space. Due to the generally complex
geometry of the surroundings, the standing wave will feature a lot of irreg-
ularities. The peaks in the figure indicate points where the standing wave
pattern interferes constructively, and troughs mark destructive interference.
As the receivers move about, they move through the peaks and the troughs
and will therefore experience varying quality of reception. Some radio trans-
mission strategies strive to counteract the fluctuations of the radio channel,
others are designed to exploit them. For example, the centralized antenna
may use opportunistic scheduling, always transmitting to the user that expe-
riences the best channel quality. That way, the average quality of reception
for each receiver will be higher than if the receivers would blindly share the
resource, e.g. by using a time slotted schedule and taking turns in using the
time slots.

To allow for opportunistic scheduling, the mobile receivers need to signal
their respective received signal strengths to the system. A central problem
is that there is an inevitable delay between the time when this information
reaches the central system, and the time when data is actually transmitted to
one of the receivers. During this delay, a receiver may move from a good spot
(peak) to a bad spot (trough), or vice versa, as indicated in the figure. This
issue motivates the idea of prediction; it is not the present channel quality
that needs to be reported, but rather the channel quality a short time period
into the future.

1
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Figure 1.1: Two mobile receivers (equipped with out-of-date antennas for illustra-
tion) move through the interference pattern created by a wave transmitted from a
centralized antenna.

1.1 Approaches to channel prediction

Assuming that the central antenna is transmitting a single tone of constant
unit amplitude, a narrowband signal yt received in additive noise vt by a
mobile user equipment (UE) may be modelled in the baseband by

yt = ht + vt, (1.1.1)

where the magnitude of the envelope of the fluctuating radio channel ht varies
with position (and thereby with time), as illustrated by the wave pattern in
Figure 1.1. For reasons mentioned above, we want to predict the channel,
say L time steps into the future. A way to model the predicted channel is to
say that it is adequately described by a weighted sum of the n most recent
channel measurements [1], [2], [3], [4]:

ĥt+L = a0ht + a1ht−1 + . . . + an−1ht−n+1, (1.1.2)

where the hat symbol (̂·) indicates that we refer to a prediction of the chan-
nel and not the channel itself. If ĥt+L is identical to the true channel ht+L,
then (1.1.2) is autoregressive (AR) in the channel coefficients. One therefore
refers to prediction methods based on the model (1.1.2) as AR methods. The
parameters {ai} in (1.1.2) are time varying if the receiver is mobile, and they
must be appropriately tuned and tracked to produce a good channel predic-
tion. Assuming that the true channel {ht} is available, it has been shown [5],
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[6] that the AR model parameters can be estimated to high precision, so that
the difference between the predicted channel ĥt+L and the true channel ht+L

is small for moderate values of L. To determine the time-varying parameters
{ai} in (1.1.2), block-wise Minimum Mean Squares Error (MMSE) estima-
tion may be used [3],[4], or adaptive methods such as Least Mean Squares
(LMS) [2],[6], or Wiener LMS [7], or Recursive Least Squares (RLS) [6] may
be employed to track the AR coefficients.

By the z-transform, the model (1.1.2) can be written on polynomial form
[8], as a finite impulse response filter

zLĥt = (
n−1∑
i=0

aiz
−i)ht. (1.1.3)

A special case, that is commonly separated from AR methods, arises when
the polynomial 1 − z−L

∑n−1
i=0 aiz

−i has all its zeros on the unit circle. The
fading channel is then modelled as a sum of sinusoids [5], [9], [10], [11],
[12], [13]. Sinusoid methods usually differ from AR methods in that the
AR parameters (the complex sinusoids in the case of sinusoidal modelling)
are estimated through subspace methods. A common subspace method used
in this context is Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) or slight modifications thereof [14], [15], [9], [11], [12]1.
Among other algorithms for estimating the parameters for complex sinusoids,
we may mention the MUltiple Signal Classification (MUSIC) algorithm [11],
[12], and root-MUSIC [17]. Eycoez et al [1] formulates the prediction problem
on AR form but uses the Maximum Entropy Method (MEM) to estimate the
parameters. A summary of performances for both AR and sinusoid methods
can be found in [5]. That investigation is undertaken both on synthetic data
and on real measurements.

Once the AR model parameters have been obtained, they are used in the
channel predictor. An obvious issue with the model (1.1.2) is that the true
fading channel coefficients {ht} are not available to the predictor. In practice,
noise reduction of noisy measurements {yt} has to be carried out to produce
a sequence of estimates that will hopefully resemble the true channel. Some
works [1],[2] consider a simplified case where the true channel coefficients are
assumed known. Others use low-pass filtering [18] or Wiener filtering [4] to
clean measurements from noise.

The noise reduction is a pragmatic intermediate step between the actual
available data {yt} and the idealized model (1.1.2). The {ht} in (1.1.2) are

1Because of a somewhat high complexity of the original ESPRIT formulation, some
works look at complexity-reduced versions of ESPRIT [10], [16]. A special utilization of
the ESPRIT is one in which the algorithm is employed in two tiers; in a first pass the time-
delays and the corresponding complex amplitudes of the sinusoids are estimated, followed
by Doppler frequency estimation in a second pass [10], [16].
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in practice channel estimates and are therefore functions of measurements
{yt}. An approach that is more straightforward than (1.1.2) to formulate the
predictor would be to say that the predictor should be formed by a weighted
sum of all past measurements:

ĥt+L =
t∑

i=0

ciyi. (1.1.4)

More generally, if multiple channels are to be taken into consideration, we
may consider predicting a vector-valued channel and expressing it as a weighted
sum of past vector-valued measurements {yi}:

ĥt+L =
t∑

i=0

Miyi. (1.1.5)

This is the approach that we will take in the present thesis. By appropriately
tuning the matrix coefficients {Mi}, we may derive the best possible linear
predictor given all available measurements. But how do we find the weights
{Mi}?

Before addressing this question, we should consider another issue; the
channel coefficients, contained in the vector ht, are never themselves of im-
mediate interest. Rather, it is some parameter relating to the channel coef-
ficients that we ultimately wish to infer, such as the maximum data transfer
rate that can be used under the current channel conditions, without the level
of distortion of the signal exceeding some predefined level.

A channel predictor that only produces point-wise predictions of the chan-
nel, as (1.1.2) does, will be inadequate under these circumstances, because it
does not provide any measure of uncertainty about the predicted parameter.
For example, let us put ourselves in the position of a point estimator that
is to infer a real-valued parameter x. The measurements, the evidence, give
us reason to believe equally strongly in the proposition that x is less than
zero, as in the proposition that x is larger than zero, and so we report the
value 0 to be an arguably reasonable point estimate of x. But now imagine
that the person receiving this point estimate is interested in the value of x2

rather than the value of x. Unless we are certain that x is very close to zero,
the point estimate 0 is of little use to him because 02 is not a good estimate
of x2. On the other hand, had we reported an accurate and full represen-
tation of our knowledge of x given the evidence at hand, then the recipient
of that information could transform that knowledge into an equally accurate
representation of a state of knowledge about any function of x.

Therefore, instead of directly calculating a specific estimate of ht+L, we
want to acquire a complete representation about our state of knowledge about
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ht+L, i.e. we want to obtain the probability density function (pdf), p(ht+L),
of ht+L:

full state of knowledge about ht+L,
given measurements to time t

= p(ht+L|y0, . . . ,yt).

In principle, this pdf can then be used to derive the pdf for any function
f(ht+L) of ht+L:

p(ht+L|y0, . . . ,yt)
change of variables−−−−−−−−−−−−−→ p(f(ht+L)|y0, . . . ,yt). (1.1.6)

In this thesis we take an information theoretic approach to probability
theory. Specifically, we adhere to the so called Bayesian school, that consid-
ers probability theory as an extension to logic. Bayesianism offers a single
method for deriving probability density functions, regardless of the nature
of involved parameters. In contrast, classical probability theory constitutes
a large set of methods for calculating estimates. These methods may pro-
duce mutually inconsistent results and may not provide the whole pdf for a
parameter.

To derive a pdf is however in many cases an arduous task of assigning
prior distributions, applying Bayes theorem, integrating over irrelevant pa-
rameters, and changing variables. We will simplify this problem by using
models that restrict the pdf:s of ht and yt to belong to a small class of
functions.

Specifically, we will let the measurement yt be a linear mapping of the
channel ht with added white Gaussian noise. In this thesis, we consider
Orthogonal Frequency Division Multiplexing (OFDM) wireless transmission
systems. In OFDM, data is transmitted over many parallel subchannels, each
subchannel carrying data at such a low symbol rate that no intersymbol inter-
ference occurs. Channel prediction performance can be improved by taking
several parallel subchannels into account at once. Instead of considering only
a scalar channel, we use a vector-valued measurement signal

yt = Φtht + vt, (1.1.7)

that has, say, w elements. The vector ht may hold w parallel subchan-
nels from a single OFDM channel, but could also comprise fading channel
coefficients from u different OFDM channels, each constituting w parallel
subchannels, so that ht has length uw. By an appropriate design of the w-
by-uw matrix Φt, the u channels are summed, together with the noise vt, in
the vector yt in a way that they can be separated and predicted individually
by studying the present and past w-vectors {yt}.

This flexibility is useful in modern multiuser systems for two reasons:
first, in a multiuser setting, it allows the receiver (here, the base station)
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to separately track the respective channels of multiple users whose signals
overlap so that a superposition of all incoming signals is received. Second, in
a so called Coordinated Multi-Point (CoMP) transmission, it allows the re-
ceiver (here, the mobile user equipment) to simultaneously track overlapping
signals from separate base stations.

It is also necessary to model the fading behaviour of the channels. We will
assume that the dynamics of the respective channel coefficients contained in
ht can be modelled as AR processes of finite order. As we shall see, this
allows us to set up a discrete-time state-space representation of the channels.

Assume that measurements up to and including time t = T are available.
When the total set of measurements y = [yT

0 . . . , yT
T ]T is a linear mapping

of the corresponding set of channel coefficient vectors h = [hT
0 , . . . , hT

T ]T

plus additive Gaussian noise and when the statistical properties of h and
the noise are known, then it is straightforward to calculate an expression for
the pdf of h given y, and prediction is equally straightforward. However,
this computation is burdensome and the number of arithmetic operations
required for each added measurement vector grows as the time T increases.

In 1960, Rudolf Kalman published a paper [19] showing that the complex-
ity of determining the pdf of e.g. a channel vector hT given old measurements
h, can be kept at a constant level, if the process {ht} can be modelled on
linear state space form and the measurements are a linear regression in ht.

2

Due to the linearity of the model and the Gaussian distribution of the
noise processes, the conditional pdf:s of ht will be Gaussian. Hence, a pdf
p(ht|y0, . . . ,yt) is uniquely determined by a mean value ĥt|t and a covari-
ance matrix Rh,t|t. The estimator, denoted the Kalman filter, operates in a

recursive fashion, updating the pair (ĥt|t,Rh,t|t) as new evidence arrives:

(ĥt|t,Rh,t|t)
new data yt+1−−−−−−−−−−→ (ĥt+1|t+1,Rh,t+1|t+1). (1.1.8)

This recursion weighs together old measurements in an optimal manner, to
produce the parameters (ĥt|t,Rh,t|t) that represent the pdf for ht given all
available measurements at time t. The Kalman filter hence provides both
the weights {Mi} in (1.1.5), and the full state of knowledge of the channel
vector, given some set of data.

The Kalman filter has been used extensively in the OFDM channel esti-
mation and prediction literature. Most works use only the point-wise channel
estimates provided by the filter. Although the numerical complexity of the
Kalman is only linear in the number of measurements, the complexity per
filter update can still be extensive. Many authors therefore use models of
low order for the respective subchannels, such as random walk models [20] or

2Actually, the condition is that yt is a linear regression in the so called state vector
from the state space model of ht, as shall be evident in Chapter 4.
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AR1 models [21], [22], [23], [24], [25], although others use models of higher
order [26], [27]3. The increased interest in recent years in multiple-input
multiple-output (MIMO) OFDM systems has led several authors to consider
MIMO OFDM channel tracking with Kalman filters [23], [24], [25], [28].

The numerical complexity of the Kalman filter is generally considered to
be a problem. However, if constant model parameters are used, the Kalman
filter will quickly settle to a stationary state. Once this condition has been
reached, many computationally demanding components in the Kalman up-
dating procedure can be turned off until the model parameters change, and
this happens, as we shall see, rather seldom.

The focus so far has been on channel prediction, but in the Kalman filter,
estimation and prediction are closely related. In fact, channel estimation
will fall out as a by-product of channel prediction. Common methods for
OFDM channel estimation is to use Wiener filters or 2-dimensional block fil-
ters spanning a fixed time-frequency region [29], [30]. Once the Kalman filter
has converged, it will be identical to a Wiener filter. Further, if the coherence
time of the channels is short, then the Kalman/Wiener filter will practically
have a finite memory, making is essentially equal to a block filter. In settings
with constant model parameters, the Kalman filter can therefore be seen as
an adaptive filter that automatically calculates optimal filter weights from
given channel models.

In this thesis, we will use the Kalman filter as an inference engine. Given
prior information about the time dispersion and the fading statistics of the
channel, and possibly also noisy measurements, the Kalman filter produces
complete representations of the knowledge about a present and/or a future
channel that can be deduced from the given information. Our motivation for
doing so can be subdivided into four topics:

Inference from vague information

Bayesian inference transforms information at hand into a logically equivalent
statement about parameters of interest (“logic” is here meant in the sense of
the extended logic to be presented in Chapter 3). In the present context, this
means that we do not need any channel data, measured or synthetic, in order
to infer how well a system will perform in terms of channel estimation and
prediction. From only vague information about e.g. channel fading statis-
tics, we can therefore directly calculate channel estimation and prediction
performance metrics.

3The filter implementation may also be simplified by modelling the parallel subchannels
as uncorrelated [20], [26]. The lack of correlation between the estimated subchannels can
then be compensated for by combining the filter outputs in an optimal manner [26].
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Superimposed received signals

The quality of the output of a Kalman filter, i.e. the level of uncertainty
associated with the output, will depend on the statistical properties of the
channel that is observed, but also on how the measurement equation (1.1.7)
is constructed. By an appropriate selection of the regressor matrix Φt, several
channels may be superimposed on one another and tracked simultaneously.
It is however up to the system designer to choose the regressor matrix in
such a way that the inferences made about the respective channels are of as
high quality as possible.

Soft information in link adaptation

Transmitted information may be encoded to make the information more ro-
bust to distortions introduced by the fading channel and by noise. The pdf:s
produced by the Kalman filter can be used by an efficient channel decoder
to retrieve the transmitted message from the noisy received signal with fewer
bit errors than if the decoder had only point-wise channel estimates to work
with.

Modelling errors

In general, any type of information can be processed using Bayesian inference.
For computational reasons, we here restrict the type of information that we
feed to the inference engine (the Kalman filter), to statistical descriptions
of the channel and possibly also noisy measurements of the channel. This
framework does not allow us to express uncertainty about the channel’s fad-
ing statistics. Whatever information about fading statistics we pass to the
Kalman filter, it will consider this information to be absolutely accurate and
draw conclusions about channel estimation and prediction accordingly. If the
characteristics that we provide about the channel is incorrect, then so will
the performance conclusions reported by the Kalman filter be. However, it is
possible to calculate how a misinformed filter performs in terms of channel
estimation and prediction. The misinformed filter believes that it has a fully
accurate description of the channel’s statistical properties, while in reality,
the actual channel is described by a different model.

1.2 Outline

The thesis is outlined as follows:

Chapter 2 presents a short history of wireless technologies and puts channel
prediction into context. A short survey of fading radio channel modelling
and the basics of Orthogonal Frequency Division (OFDM) are also given as
a prerequisite for later chapters.
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Chapter 3 gives an overview of linear filter theory. We take an information
theoretic approach in which results from calculations are interpreted as an
agent’s state of knowledge, given some specified set of data and background
information. To make sense of this interpretation, we present an overview
of an approach to probability theory known as Bayesianism. The Kalman
filter is then derived using a geometric perspective, and formulas that will
be useful in later chapters are given.

The material presented in this chapter has in part been presented in

“Channel Estimation and Prediction from a Bayesian Perspective”,

D. Aronsson, Licentiate thesis, Uppsala University, 2007

Chapter 4. This chapter lays the foundation for coming chapters. In a step-
by-step fashion, a state space representation of multiple-input fading channels
is constructed. We use special matrix structures that permits easy scaling
of the channels. The numerical complexity for Kalman filters operating on
these state-space models is investigated and we find that the complexity is
considerably alleviated by the use of the special matrix structures, as com-
pared to a general Kalman filter. We also investigate some less conventional
Kalman filter formulations but find that they are not useful in the present
context.

The material presented in this chapter has in part been presented in

“Channel Estimation and Prediction from a Bayesian Perspective”,

D. Aronsson, Licentiate thesis, Uppsala University, 2007

Chapter 5. Here we consider channel estimation in a special type of trans-
mission scheme proposed within the WINNER project [31]. The objective
has been to see how well channel estimation performs for different block sizes
within the transmission scheme referred to as Block Interleaved Frequency Di-
vision Multiple Access (B-IFDMA). By exploring a large number of designs
for the regressor matrix in the measurement equation, we find that blocks as
small as 22 Hz · s can be used with adequate estimation performance.

The material presented in this chapter has in part been presented in

“Performance Evaluation of Memory-less and Kalman-based Channel Estimation

for OFDMA”,

D. Aronsson, T. Svensson and M. Sternad,

IEEE Vehicular Technology Conference VTC-Spring 2009, and

“Block Interleaved Frequency Division Multiple Access for Power Efficiency, Ro-

bustness, Flexibility and Scalability”,

T. Svensson, T. Frank, T. Eriksson, D. Aronsson, M. Sternad and A. Klein,

EURASIP Journal on Wireless Communications and Networking, Special Issue on

3GPP LTE and LTE Advanced, vol. 2009
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Chapter 6. Channel prediction when multiple signals are received simulta-
neously is considered here. We study how to design special-purpose reference
signals so as to facilitate the prediction of multiple channels. A special type,
“time-varying pilots”, turns out to be important in cases where the num-
ber of estimated channel coefficients is larger than the number w of utilized
subchannels. We also study the importance of the Doppler spectrum, the
signal-to-noise ratio, and the channel frequency selectivity on channel pre-
diction performance.

The material presented in this chapter has in part been presented in

“Kalman Predictor Design for Frequency-adaptive Scheduling of FDD OFDMA

Uplinks”,

D. Aronsson and M. Sternad, IEEE Conference on Personal, Indoor and Mobile

Radio Communications (PIMRC) 2007, and

“OFDMA Uplink Channel Prediction to Enable Frequency-adaptive Multiuser Schedul-

ing”,

D. Aronsson and M. Sternad, European Signal Processing Conference (EUSIPCO)

2007

Chapter 7. We consider link adaptation for unknown predicted fading chan-
nels. We show how to incorporate uncertainties about the channel, both re-
garding the present channel (channel estimation) and the true future channel
(channel prediction). It is emphasized that the degree of uncertainty that
should appropriately be considered is that of the future channel estimate,
and not the future channel itself. We consider uncoded as well as coded sys-
tems and adress the problem of choosing the code rate for large code blocks
spanning a large portion of the total frequency bandwidth. Since the optimal
link adaptation strategy is then difficult to implement, a suboptimal scheme
working for pedestrian velocities is suggested.

Chapter 8. When a Kalman filter is implemented as a channel estima-
tor/predictor, a channel model needs to be constructed from measurements
of the channel. In this chapter, we investigate various aspects of channel
model parameter acquisition. These include the method to use for parame-
ter acquisition, model order selection, block-size selection, noise suppression,
and model acquisition for multiple channels. We also study the convergence
rate of the Kalman filter in some typical scenarios.

Chapter 9. Here we derive formulas for one-step prediction performance
when the Kalman filter is misinformed. A few case studies illustrate the
utility of the formulas.



Chapter 2
Wireless communications

2.1 A brief historical overview

The steadily increasing demand for mobile services has transformed early
analog radio systems into the packet-based digital wireless systems we see
today. Early radio systems used a single central antenna, but due to limited
spectrum availability, the number of users such a systems could support was
low [32]. A crucial step towards increasing capacity of large-coverage wireless
multiuser systems was taken in the 1950’s and 60’s when the cellular system
concept was developed; instead of using only a single central antenna, multi-
ple centralized antennas connected through a core network can be deployed.
Each such antenna is called a base station (BS). Taking advantage of the fact
that received signal strength falls off with increasing distance, different user
equipments (UEs) can communicate with separate base stations and thereby
utilize the same radio resource (frequency, time slot, spreading code, etc.).
The location of a BS in a cellular system is sometimes referred to as a site,
and the coverage area served by each BS is called a cell. Having small cells
means that many users within a given geographical area can share the same
resource. On the other hand, small cells also require many sites, making the
system expensive to deploy.

The concept of resource reuse generates interference among different UEs
and BSs using the same resource. The reuse factor is defined as the ratio of
the total number of cells to the number of cells providing a specific resource.
The reuse factor needs to be chosen based on an optimization of total sys-
tem capacity and performance that takes inter-cell interference into account.
Figure 2.1 illustrates a few reuse patterns on a hexagonal grid. (It is common
to model a site as a hexagon, since hexagons tile the plane. Alternatively,
because each site is often equipped with three base station, each BS serving
a cell in the form of a 120◦ sector, the three cells covered by a site can be

11
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(a) reuse 3 (b) reuse 4 (c) reuse 7

(d) reuse 9 (e) reuse 12

Figure 2.1: Regular reuse patterns

modelled as three connected hexagons.) The reuse factor is chosen as low as
possible. This implies that the noise and interference experienced by a UE in
a cellular system is normally dominated by the interference from other UEs,
rather than by thermal noise. We then say that the system is interference
limited rather than noise limited.

New technologies would soon be necessary to meet the demand for a fur-
ther increase of capacity and support for more services. While first generation
systems were analog, enabling voice traffic only, second generation systems
introduced digital communication, which enabled, apart from simple voice
traffic, data services such as e-mail and sms. In contrast to analog systems,
where each user needs to be allocated an exclusive frequency band, digital
systems allow more flexibility in the form of a number of different multiple
access techniques, allowing multiple users to share the same channel. The
most wide-spread of the second generation systems is GSM, which is based
on Time Division Multiple Access (TDMA) in combination with Frequency
Division Multiple Access (FDMA). GSM uses a number of separate radio
channels. These channels are divided into time frames, each frame consisting
of several time slots. A voice user is assigned a prespecified part of a frame,
regardless of how many other users are sharing the channel. This ensures
quality of service, since a user will always be guaranteed a constant through-
put if the signal is received with sufficient power. On the other hand, the
channel is only partially utilized in a system with few UEs.
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Data networking paradigms can be divided into circuit switching and
packet switching. Circuit switching provides an unbroken and dedicated link
between sender and receiver, making it ideal for traditional voice traffic.
Packet switching on the other hand, groups information bits, regardless of the
type of information they represent, into packets which are then transferred
over non-dedicated links. Packet switching is therefore suitable for systems
that should support general data transfer. During the second half of the
1990’s, GSM was enhanced with General Packet Radio Services (GPRS). In
this standard, several time slots can be aggregated so that a user can use
more than one time slot in a frame. Exploiting this simple technique of
utilizing unused resources, GPRS increased the peak data rate from 9.6 kbps
to about 140 kbps. Similar techniques were used in the American IS-136
standard.

The data rate was later increased further up to 348 kbps with the intro-
duction of Enhanced Data rates for GSM Evolution (EDGE). EDGE uses
higher order modulation and link adaptation to increase capacity. Measure-
ments of the received Signal-to-Noise Ratio (SNR) is fed back to the trans-
mitter and used for choosing coding and modulation (CM) formats [32],[33].

The third generation (3G) cellular systems, based on wideband Code
Division Multiple Access (WCDMA), were introduced at the turn of the
millennium. Target data rates for 3G were initially set to up to 2 Mbps for
indoor users, up to 144 kbps for pedestrians, and up to 64 kbps for vehicular
users, but today, these number are often widely exceeded in deployed systems.

A major step that boosted initial 3G performance was taken with High
Speed Packet Access (HPSA), which is the joint name for High Speed Down-
link Packet Access (HSDPA), introduced in Release 5 of the 3GPP1/WCDMA
specifications, and the Enhanced Uplink, introduced in Release 6. HSPA uses
higher order modulation, channel-dependent scheduling and rate control, and
fast Hybrid Automatic Repeat reQuest (HARQ) with soft combining. This
provides data rates of 5.7 Mbps in the uplink (the link from the UE to the
BS) and data rates of 14 Mbps in the downlink (the link from the BS to the
UE). It also provides reduced delays and delay variations over the wireless
links, which is important for high-speed data traffic.

3G evolution has since 2005 forked into two parallel tracks: HSPA Evo-
lution and Long Term Evolution (LTE). The LTE standard [34] has fewer
restrictions on backwards compatibility than HSPA and also addresses more
complex spectrum situations. LTE is optimized for broadband data traffic,
and is based on packet switching. The multiple access technique used in the
LTE downlink is Orthogonal Frequency Division Multiple Access (OFDMA)
which builds on Orthogonal Frequency Division Multiplexing (OFDM). OFDM

1The Third-Generation Partnership Project (3GPP) develops the specifications for
UTRA (the official name for the 3G standard described here) and GSM systems.
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divides the radio resource into small time-frequency units. In OFDMA, these
units can be distributed among users in a flexible way, which takes their chan-
nel variability over frequency and time into account. We return to OFDM
in Section 2.4. LTE is sometimes identified as “almost” a fourth genera-
tion (3.9G) system. Among many improvements over earlier systems, LTE is
specified to support up to 50 Mbps and 100 Mbps in the uplink and downlink,
respectively, over a bandwidth of 20 MHz. It also provides further reductions
of latencies and delays in the packet transmission.

Among other techniques, HSPA Evolution and LTE introduce multi-
antenna support, which is the principal technology for increasing capacity
in these systems. Multi-antenna techniques can be divided into three cate-
gories:

• Spatial multiplexing makes it possible to transmit several parallel
data streams over the Multiple Input Multiple Output (MIMO) link,
hence possibly increasing spectral efficiency several times. By appro-
priate signal processing at the transmitter and the receiver, the channel
can be used to serve at most min(nT ,nR) independent streams, where
nT and nR are the number of transmitting and receiving antennas,
respectively.

• Diversity techniques suppress fading by constructively adding base-
band signals from multiple antenna elements. It is common to assume
that the channels are Rayleigh fading [32]. The perceived channel af-
ter reception will feature more favourable statistical properties of the
fading than Rayleigh fading, in the sense that the fading dips will be
fewer and not as deep.

• Beamforming is a means for steering radiated energy in a prescribed
range of directions (the antenna beam), or for making a receiving an-
tenna array more sensitive to radiated energy coming from a certain
range of directions.

Spatial multiplexing uses antenna arrays on both the transmitter and receiver
sides, while diversity techniques and beamforming can be used on either or on
both sides. All these techniques require some amount of information about
the current radio channel quality (the Channel State Information (CSI)).
Techniques employed on the transmitter side require Channel State Informa-
tion at the Transmitter (CSIT), which in a Frequency Division Duplex (FDD)
system, i.e. a system using different frequency bands for the uplink and the
downlink, requires the receiver to signal CSI back to the transmitter. Time
Division Duplex (TDD) system, on the other hand, alternatingly transmit
and receive on the same frequency band. In a TDD system, the transmitter
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may therefore use channel estimates obtained from recent transmissions over
the reverse direction (the reverse link). This assumes channel reciprocity, i.e.
that the channel is the same regardless of direction.

Many MIMO techniques, as well as link adaptation and scheduling, re-
quire CSI feedback. When a UE is mobile, the reported quality indicator
will sometimes be outdated when the transmission takes place, owing to
the transmission frame structure, the feedback delay, and the computational
delays of the system. This is true for TDD as well as for FDD systems. Al-
though link adaptation is employed in 3G and in GSM, current systems do
not attempt to compensate for this effect. The alternative is to use channel
prediction, so that the reported channel quality matches the quality expe-
rienced at the time of transmission as well as possible. In this thesis, we
investigate channel prediction and estimation when optimal observers of the
time varying channel is used.

2.2 The usefulness of prediction

In a cellular system with mobile users, base stations as well as UEs will nor-
mally experience rapid changes of their received channel quality. The idea
with prediction is then for the receiver to, well in time for transmission, sig-
nal its future expected channel quality to the transmitter. The transmitter
may then opportunistically schedule UEs and/or opportunistically choose
transmission method, so as to increase link performance. However, chan-
nel predictions are always associated with a degree of uncertainty. How to
take this uncertainty into account when making scheduling and link adap-
tation decisions is very difficult to say in general, because it depends on the
scheduling algorithm and on the available transmission methods.

In a MIMO system with flat fading channels, i.e. channels that fade
equally for all frequencies, the total nR-by-nT MIMO channel can be de-
scribed by a matrix H. The channel estimator calculates an estimate Ĥest

based on as recent noisy measurements as possible, while the predictor pro-
duces a prediction Ĥpred which is based on somewhat older measurements.

Different transmission techniques will place different requirements on Ĥest

and Ĥpred.

To use spatial multiplexing, the channel estimation Ĥest has to be very
accurate. Although Ĥest is not available at the time of prediction, we will see
that the accuracy of the estimate can be calculated beforehand. It is in this
way possible to decide whether to use spatial multiplexing. The expected
capacity and performance of spatial multiplexing is given by the eigenvalues
of the matrix ĤestĤ∗est, whose distribution can, in principle, be calculated
from the predictions [35] [36].
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When the channel quality is too low for spatial multiplexing to be used,
beamforming may still be employed. If the channel estimate is of high quality,
then the link performance when combining beamforming at the transmitter
and the receiver is dictated by the largest eigenvalue of ĤestĤ∗est, whose distri-
bution can be derived from the predictions. Beamforming on the transmitter
side requires some degree of CSIT. Optimal beamforming from nT transmit
antennas to a receiving antenna, in the sense that the received signal power
is maximized under a constraint on transmitted power, is given by scaling
the signal transmitted from the respective antennas with weights equal to h∗,
where h is the nT channel coefficients and (·)∗ indicates complex conjugation.
This requires the full feedback of (an accurate estimate of) the channel. To
enable the use of a more modest amount of feedback information, the trans-
mitter may have a predefined set of antenna weight configurations (beams)
from which one can be selected, based on the channel estimation performed
by the receiver.

The SNR for the beamformed link is approximately a factor nT higher
than for the corresponding SISO link. A similar array gain can be achieved
on the receiver side without the need of channel prediction, if the receiver
has multiple antennas.

The choice of MIMO technique offers a tradeoff between on the one hand,
increasing the data rate by multiplexing many streams in parallel, and on
the other hand, multiplexing fewer (or only one) streams, which are trans-
mitted over more “stable” channels, with better fading statistics. For a given
multiple antenna transmission technique, link adaptation can then be used
to further increase performance. Channel prediction will then need to be
employed for making appropriate link adaptation decisions.

In modern systems and systems proposals such as LTE, WINNER, and
WiMAX, link adaptation is now being used increasingly and over shorter
and shorter time scales. Furthermore, as MIMO techniques are gaining a
wider interest, the need for higher quality channel estimates and predictions
is becoming evident. Also, recent research investigates the prospect of using
Coordinated Multi-Point transmission (CoMP), i.e. letting multiple base sta-
tions cooperate when communicating with UEs. This potentially increases
the system delays so that longer prediction ranges have to be used. These
issues make channel prediction increasingly important.

As previously noted, cellular systems are interference limited, and all
decisions regarding beamforming and spatial multiplexing come with an in-
terference penalty for other UEs. A scheduling strategy that provides close
to optimal performance is therefore very complicated to design. The main
focus in this thesis will not be on answering how to take decisions regarding
link adaptation and transmission techniques, but rather on how to produce
the predictions that necessarily underlie such decisions.
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2.3 Channel models

Efficient channel estimation and prediction in wideband systems necessitate
the modelling of broadband frequency selective radio channels. The channel
impulse response in the passband is time-varying for a mobile receiver and
can be written as a sum of components that have different propagation delays
{τn}, due to reflections or scattering in the transmission environment [32]:

c(τ, t) =
N∑

n=0

αne−jφn(t)δ(τ − τn), (2.3.1)

where the factor αne−jφn(t) is the complex fading amplitude of path n. Each
path is characterized by a real-valued path gain αn, a phase angle φn(t), and
a propagation delay τn. We have here assumed that the model is valid over a
short period of time, and that the number of paths, N , the path gains, and
the propagation delays are independent of time over this period. The phase
angle for a path will however generally be time varying and can be expressed
as

φn(t) = 2πfcτn(t)− φDn
(t), (2.3.2)

where fc is the carrier frequency and the contribution from the Doppler shift
for path n, with Doppler frequency fDn

(t), is

φDn
(t) =

∫
2πfDn

(t)dt. (2.3.3)

Each path is associated with a distinct reflector, scatterer, or cluster of scat-
terers and hence a distinct incident angle θn. We therefore have

fDn
(t) = v cos θn(t)/λ = fD cos θn(t), (2.3.4)

where v is the velocity, λ is the wavelength, and fD is the maximum Doppler
frequency (obtained for a path aligned with the direction of movement). If
we would assume that the incident angle is constant so that θn(t) = θn, then

φDn
(t) = 2πfDt cos θn, (2.3.5)

but this relation will not hold in general over long intervals because nearby
point scatterers will cause θn to vary over time which means that (2.3.5) will
contain higher order terms in t [4]. Also, clusters of scatterers may cause the
Doppler frequency to be time varying.

The parameters N , {αn}, and {τn} in the model (2.3.1) vary over a con-
siderably longer time scale than the phase angles {φn}. As the basis of the
design of a channel estimator/predictor, we shall therefore assume that the
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passband channel can be modelled locally in time as a finite number of paths
of known propagation delays {τn} but unknown complex fading amplitudes
{αne−jφn(t)}. The set of fading frequencies (the Doppler spectrum) may fea-
ture strong spectral components.

Multiple paths may have approximately the same delays. The sum of all
paths having delay ≈ τi is denoted a cluster and will then constitute a single
term in (2.3.1). If the number of paths, Ni, in a cluster goes to infinity and
the phase angles of these paths are independent, then the frequency distri-
bution over time for the channel coefficient ci � c(τi, t) will be a circular
symmetric complex Gaussian distribution in the complex plane. Its squared
magnitude |ci|2 will then be frequency distributed according to an exponen-
tial distribution, while the magnitude |ci| will be distributed according to a
Rayleigh distribution [32], see also Appendix 4.A. However, the Gaussian
distribution will also be used in the form of a probability density function to
express our ignorance as to the value of the channel coefficient ci. Accord-
ingly, the probability density of the magnitude will be Rayleigh distributed.
This interpretation does not mean that the frequency distribution has to be
a Rayleigh distribution, or that the number of paths in the cluster needs to
be large.

It is often convenient to use baseband representations of both the trans-
mitted signal and the channel, so that mathematical manipulations become
independent of the carrier frequency fc. The channel model (2.3.1) can how-
ever not be used as a baseband channel model straight off since its frequency
response in a region centred at fc is not necessarily the same as that centred
at 0 Hz. A proper translation in the frequency domain, that is a multipli-
cation with e−2πjfct, would therefore be necessary. However, we will here
be studying OFDM systems exclusively, in which time domain channels and
signals are transformed to the frequency domain via a discrete Fourier trans-
form. There is therefore no direct need for a baseband representation. A
factor e−2πjfct translating the baseband to the passband could be included
in the Fourier matrix F , but this is unnecessary since we shall primarily
be interested in studying covariance matrices, in which every occurrence of
a multiplication with F will always be complemented with a multiplication
with F∗, effectively cancelling out the factor e−2πjfct.

2.3.1 Statistical characterization

The channel can be statistically characterized by studying the autocorrelation
function [32]

Ac(τ1, τ2; t, t + Δt) � E{c∗(τ1; t)c(τ2; t + Δt)}. (2.3.6)
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Table 2.1: Various channel characteristics in terms of carrier frequency fc, UE
velocity v, speed of light c0, and sampling period tp. The expressions are valid in
time-dispersive environments, where the maximum Doppler frequency dominates
the Doppler spectrum. In line-of-sight scenarios, or when considering individual
beams, the velocity v should be replaced with v cos θ, where θ is the incident angle.

Wavelength λ = c0/fc

Maximum Doppler frequency fD = vfc/c0

Number of samples per period (based on fD) c0/(vfctp)
Time period t measured in wavelengths tfcv/c0

We shall assume that Ac(·) is time-invariant over short periods of time and
that the scattering is uncorrelated between paths so that Ac(τ1, τ2; t1, t2) = 0
when τ1 �= τ2. Ac(·) may then be defined as a function of τ and t:

Ac(τ, Δt) � Ac(τ, τ ; 0, Δt). (2.3.7)

With the channel model (2.3.1), Ac(τ, Δt) is non-zero only for discrete val-
ues on the τ -axis but features generally continuous-time functions depend-
ing on the time dynamics of the paths, e.g. Bessel functions, along the Δt-
axis. See Figure 2.2 for an illustration. The range over which the multi-
path intensity profile or delay power spectrum or power delay profile Ac(τ, 0)
is essentially non-zero is called the multipath spread Tm. Its reciprocal
(Δf)c � T−1

m , which is the range over which the spaced frequency correlation
function

∫∞
−∞Ac(τ, 0)e−2πjfτdτ has essential support, is called the coherence

bandwidth. Similar measures exist for the Δt direction. Integrating over τ ,
we define the spaced time correlation function

Ac(Δt) �

∫ ∞

0

Ac(τ, Δt)dτ. (2.3.8)

The range over which Ac(Δt) has essential support is called the coherence
time (Δt)c. Its reciprocal Bd � (Δt)−1

c , which is the range over which the
Doppler power spectrum

∫∞
−∞Ac(Δt)e−2πjfΔtdΔt has support, is called the

Doppler spread. The Doppler spread is dictated by the maximum Doppler
frequency of the system, which hence is an important parameter. It can be
expressed in terms of UE velocity and carrier frequency. Table 2.1 lists the
maximum Doppler frequency as well as some other useful characteristics for
fading channels.

Studying OFDM systems, it is convenient to characterize a channel in
terms of the multipath spread and the Doppler spread. The value of the
former indicates the delay difference of the significant transmission paths
that contribute to the channel. Each μs of relative delay corresponds to a
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�t
Τ

Figure 2.2: The autocorrelation function Ac(τ,Δt) for a channel described by the
specular model (2.3.1) with three multipath components (clusters). Each multi-
path component here experiences fading according to Jakes’ model [37],[32]. Their
spaced time autocorrelation functions are therefore Bessel functions.

path difference of 300 m, so typical values for Tm is up to 10 μs in urban and
suburban areas, and up to 30 μs in rural hilly environments.

A worst case value for the Doppler spread is the maximum Doppler fre-
quency which scales linearly with the carrier frequency and the receiver’s
velocity. As a simple rule of thumb, with a 3 GHz carrier, the worst case
value of Bd (measured in Hz) is ten times the velocity (measured in m/s).

An important characteristic used in the design of an OFDM system is the
size of the time-frequency region over which the channel is essentially static.
It is approximately given by (Δt)c(Δf)c = (TmBd)

−1, and is typically a few
thousand Hz·s.

2.3.2 Two channel models

Here we present two channel models that will be used throughout the thesis.

The WINNER II C2 NLOS channel

The WINNER II C2 non-line-of-sight channel[38], used within the WINNER
II project [39], is designed to represent a suburban macro-cell environment
where the BS antenna is clearly above surrounding buildings. It represents
a situation with non-line-of-sight (NLOS) propagation paths only. Each in-
dividual path is assumed to be Rayleigh fading, and the fading of all paths



Chapter 2. Wireless communications 21

Table 2.2: Power delay profile of the WINNER II C2 NLOS channel model. To
each of the 24 clusters correspond a propagation delay and a total power for the
paths that constitute the cluster.

cluster no. 0 1 2 3 4 5 6 7 8 9 10 11
delay[ns] 0 60 75 145 150 155 150 190 220 225 230 335
power[dB] -6.4 -3.4 -2.0 -3.0 -5.2 -7.0 -1.9 -3.4 -3.4 -5.6 -7.4 -4.6
cluster no. 12 13 14 15 16 17 18 19 20 21 22 23
delay[ns] 370 430 510 685 725 735 800 960 1020 1100 1210 1845
power[dB] -7.8 -7.8 -9.3 -12.0 -8.5 -13.2 -11.2 -20.8 -14.5 -11.7 -17.2 -16.7

are uncorrelated. Its power delay profile (PDP) is listed in Table 2.2, and
the PDP is plotted along with the spaced frequency correlation spectrum in
Figure 2.3.
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Figure 2.3: Power delay profile and spaced frequency correlation function for the
WINNER II C2 NLOS channel model [38].

The -3 dB coherence bandwidth is about 4 MHz for this model, as can
be seen from Figure 2.3. From Table 2.2 we see that 90 % of the total power
is collected within about 450 ns, which by the relation (Δf)c = T−1

m would
suggest a coherence bandwidth of a little less than 2.5 MHz. The exact value
of the coherence bandwidth is a matter of definition.

The WINNER I B1 NLOS channel

This channel model was defined within the WINNER I project[40]. It is
defined for outdoor environments where both the BS antennas and the UE
antennas are below surrounding buildings. We use this channel model to be
consistent with reference [41], whose results we will build upon in Chapter
7. The power delay profile for this channel model is described in Table
2.3. Although the original model attributes non-zero-mean values to some
of the paths, i.e. some paths have Rice components, we will not use any
Rice components in our investigations. The PDP is plotted along with the
spaced frequency correlation spectrum in Figure 2.4. The -3 dB coherence
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Table 2.3: Power delay profile of the WINNER I B1 NLOS channel model. To
each of the 7 clusters correspond a propagation delay and a total power for the
paths that constitute the cluster.

cluster no. 0 1 2 3 4 5 6
delay[ns] 0 10 40 60 85 110 135
power[dB] -1.25 0 -0.38 -0.10 -0.73 -0.63 -1.78
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Figure 2.4: Power delay profile and spaced frequency correlation spectrum for the
WINNER I B1 NLOS channel model.

bandwidth is about 8 MHz for this channel model, as can be seen from
Figure 2.4. This is in agreement with the multipath spread; 90 % of the
total power is collected within about 120 ns.

2.4 OFDM

Orthogonal frequency division multiplexing (OFDM) is a technique in which
a large number of narrowband subchannels are transmitted in parallel over a
large bandwidth. The technique allows for maximally dense packing of these
subchannels. OFDM has been chosen as radio access technique for the LTE
downlink, and for both uplink and downlink in the WiMAX standard [42].
OFDM was also used in the WINNER radio concept (uplink and downlink).
OFDM is therefore the transmission technique to be studied in this thesis.
A main advantage of OFDM is that equalization of frequency-selective chan-
nels becomes almost trivial, since the channel from one transmit antenna to
one receiver antenna within each narrowband subchannel can be expressed
as a scalar complex gain, see Section 2.4.2. Furthermore, in multiuser sys-
tems that use link adaptation, the radio resource may be divided into small
time-frequency resource blocks that can be allocated to different users, using
different link adaptation parameters. This allows the variations of fading
channels to be exploited, making OFDM an attractive technique in such sce-
narios. On the downside, OFDM is sensitive to frequency offsets and requires
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a comparably complex receiver architecture.

In Single Input Single Output (SISO) OFDM, the data stream to be
transmitted is mapped onto symbols from a finite symbol alphabet (in general
in combination with e.g. encoding and bit-interleaving to make the signal
robust to errors). The symbols are then divided into groups of length N .
These N -vectors are regarded to lie in the frequency domain, so that each
element in a vector sf corresponds to one subchannel. Each vector sf is then
processed by an IFFT to a vector F∗sf of length N , where F is the Fourier
matrix (see below). A “cyclic prefix” of length NCP is added. A digital-to-
analog converter transforms the sequence of length (N +NCP ) into an analog
signal, which modulates the carrier. On the receiver side, an analog-to-digital
converter produces the corresponding sequence of length (N + NCP ), now
noisy and distorted by the channel, after which the cyclic prefix is removed.
Studying one of the received sequences after cyclic prefix removal, omitting
time indices, we can write the received signal ytime of length N as

ytime = circ([gT 01×(N−l)])F∗sf + w, (2.4.1)

where g is the baseband channel impulse response of length l, sf is the
frequency-domain symbol vector of length N , and w is a white Gaussian
noise vector of length N with covariance matrix σ2

wIN . The subscript (·)f

indicates that we are here considering the full bandwidth of N subchannels.
The operator circ(·) is defined as

circ([c0 c1 c2 . . . cn−1]) =

⎛
⎜⎜⎜⎝

c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2
...

c1 c1 c3 · · · c0

⎞
⎟⎟⎟⎠ , (2.4.2)

so that circ(aT ) is a square circulant matrix whose first row is aT , and the
N -by-N Fourier matrix F is defined as

F [i, j] = N−1/2e−2πjij/N , i = 0, . . . , N − 1, j = 0, . . . , N − 1, (2.4.3)

which implies that FF∗ = I.

Applying an FFT to the received signal ytime, we use the eigenvalue de-
composition of a circulant matrix,

circ(a) = F∗ · diag(N1/2Fa) · F (2.4.4)
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to get the frequency-domain signal

yf = Fytime

= F(circ([gT 01×(N−l)])F∗sf + w)

= FF∗ · diag(hf) · FF∗sf + Fw

= diag(hf)sf + vf

= diag(sf)hf + vf ,

(2.4.5)

where hf = N1/2F [gT 01×(N−l)]
T is the channel frequency response for the

N subchannels, and vf = Fw has covariance matrix σ2
vIN , where σ2

v = σ2
w.

Note that (2.4.5) holds for a single link, i.e. one transmit antenna sending
to one receiving antenna. In Chapter 4 we will extend the discussion and con-
sider MIMO OFDM systems. This is useful for modelling channels between
BSs and UEs equipped with antenna arrays. In OFDM uplinks, multi-input
modelling is furthermore useful for modelling multiple UEs sharing the same
radio resource. Also, in the downlink, multi-input modelling can be used
to model Coordinated Multipoint Transmission (CoMP), where several BSs
cooperate in transmitting to a UE.

2.4.1 Dimensioning and design of an OFDM system

The realistic worst case scenario of the channel’s characteristics dictates how
an OFDM system is normally dimensioned. First, the cyclic prefix needs to
be longer than the largest expected multipath spread of the channel in order
for the system to capture the energy from all propagation paths within one
OFDM symbol. Hence we would set the length of the cyclic prefix to the
maximum realistically expected multipath spread in the types of environ-
ments for which the transmission system is designed. The energy contained
in the cyclic prefix will however be discarded at reception (unless some al-
gorithm to collect part of this energy is used), so the length of the OFDM
symbol needs to be considerably longer, say about ten times longer, than
the length of the cyclic prefix, in order to limit the relative power loss (or
overhead) due to the cyclic prefix. Finally, the bandwidth of a single sub-
channel is given by the reciprocal of the OFDM symbol duration (without
cyclic prefix). The fact that the OFDM symbol duration is selected to be
much longer than the multipath spread means that the coherence bandwidth
will greatly exceed the bandwidth occupied by a subchannel. This means
that a symbol stream transmitted over a subchannel experiences flat fading.
Table 2.4 lists the OFDM symbol duration and subchannel bandwidth for a
few example OFDM systems.

The symbol carried by a single subchannel of an OFDM symbol is some-
times referred to as a channel symbol or a time-frequency symbol. In this
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thesis we will use the notion sub-symbol. The location for a sub-symbol,
identified by its subchannel and OFDM symbol indices, will be referred to
as a sub-location.

Note that, since the bandwidth of a subchannel is the reciprocal of the
OFDM symbol duration, the “size” of a sub-symbol, i.e. its duration times
its bandwidth, is precisely equal to 1 (without physical unit). In fact, a sub-
symbol constitutes exactly one complex degree for freedom of the channel.

2.4.2 Equalization

The transmitted symbols need to be retrieved from noisy received data. Since
each subchannel is subjected to flat fading, the only part of the channel
affecting the received sub-symbol on sub-location {f, t} is the complex-valued
channel coefficient hf,t for that location:

yf,t = hf,tsf,t + vf,t, (2.4.6)

where sf,t is the unknown transmitted sub-symbol that we want to retrieve,
and vf,t is noise. The most common and direct approach to equalizing the

channel is simply to invert the received signal with some estimate ĥf,t of the
channel:

s̃ = ĥ−1y = ĥ−1hs+ ĥ−1v = ĥ−1(ĥ+ h̃)s+ ĥ−1v = s+ ĥ−1h̃s+ ĥ−1v, (2.4.7)

where, for brevity, we have excluded the {f, t} subindexing, and h̃ is the
estimation error h− ĥ. Here, s̃ is a “soft” estimate of s and forms the input
to the detector. Clearly, the total noise contribution has two sources: one
from the noise v and one from the estimation error h̃. The estimate (2.4.7)
is called the least squares (LS) estimate of s.

The LS equalization is suboptimal in the sense that it does not take into
consideration the variances of v and s. An alternative to LS equalization
is to form the minimum mean squares error (MMSE) estimate (cf. Section
3.1):

s̃MMSE =
ĥ∗

|ĥ|2 + σ2
v/σ

2
s

y. (2.4.8)

Here, σ2
s and σ2

v are the variances of s and v, respectively. Inserting (2.4.6)
into (2.4.8) and using the simplified notation, we see, after some algebra,
that

s̃MMSE = s +
h̃ĥ∗ − σ2

|ĥ|2 + σ2
s +

ĥ∗

|ĥ|2 + σ2
v, (2.4.9)

where σ2 = σ2
v/σ

2
s . The noise terms are now slightly different from those in

(2.4.7).
We will assume LS equalization in this thesis because of its simplicity

compared to MMSE equalization.
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Figure 2.5: Pilot patterns for a few systems. The grids illustrate the sub-locations
for pilots(gray) and payload data(white). The LTE patterns refer to the pilot lay-
out used per transmitting antenna, so that when multiple transmitting antennas
are used, they use similar but non-overlapping patterns. Frequency runs verti-
cally and time runs horizontally. One square symbolizes one OFDM symbol times
one subchannel. The OFDM symbol duration and subchannel bandwidth for the
respective systems are listed in Table 2.4.

2.4.3 Training

To facilitate channel estimation and prediction, known reference sub-symbols
are distributed across the time-frequency grid. A minimum requirement on
the placement of these sub-symbols, that we will refer to as pilots, is that
the spacing in frequency is narrower than the coherence bandwidth, and that
the spacing in time is shorter than the coherence time. Figure 2.5 shows the
pilot patterns used in a few example systems.





Chapter 3
Linear filtering and inference theory

This chapter presents fundamental results in linear estimation theory needed
for conducting channel estimation and prediction in later chapters. We will
stress the usefulness of interpreting the outputs from channel estimators and
predictors as a complete state of the knowledge that is acquired from noisy
channel measurements. The foundations for interpreting probabilities as a
state of knowledge is here presented, in Section 3.2. Readers that are already
acquainted with this interpretation of probability may just skim over this
section. In Section 3.4, we present fundamental results for Kalman filter
theory that will be useful later in the thesis. Again, readers familiar with the
subject may skip this Section at this moment and return to specific results
as they are needed.

3.1 A channel model

In this thesis we shall be concerned with estimation and prediction of un-
known radio channels. The two are closely related, so to simplify the exposi-
tion we will initially restrict the discussion to channel estimation. To begin
with, we must describe the relationship between some kind of measurement
y and the unknown channel(s) h. As a first illustration, we will take the
model

y = Φh + v (3.1.1)

to be an appropriate description of reality. The term v stands for unknown
additive white Gaussian noise (AWGN), however with known covariance ma-
trix Rv. We assume that the v and h are uncorrelated. The regressor matrix
Φ is also assumed known, as well as the covariance matrix Rh for the prior
distribution of h.

Channel estimation and prediction theory has a somewhat backwards

29
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approach to modelling; it is the channel that is the desired “signal”. The
transmitted signals, which are included in Φ, merely serve as an aid for esti-
mation. With this approach, known “reference” signals have to be transmit-
ted at the time-frequency sub-locations where the channel estimation takes
place. Once an estimate has been obtained, it can be inter- or extrapolated
to sub-locations where unknown payload data reside.

The objective is now to calculate an estimate ĥ of h of highest possible
accuracy, based on a measurement y. The probably oldest approach, going
back to Legendre and Gauss, is to form the estimate that produces the least
possible power for the noise v, i.e. to choose ĥ such that

‖y − Φĥ‖2 ≤ ‖y − Φȟ‖2 (3.1.2)

for all ȟ ∈ Cn, where n is the dimensionality for h. Given in most textbooks
on linear estimation, the solution follows from differentiating ‖y−Φȟ‖2 with
respect to ȟ and finding the root. It is usually referred to as the least squares
(LS) solution. Assuming Φ to be a matrix with full rank, it is given by

ĥLS = (Φ∗Φ)−1Φ∗y, (3.1.3)

where (·)∗ denotes Hermitian transposition.
The LS estimate can be improved upon by taking into account the prior

knowledge that we have about h and v. Based on our above stated prior
information of the properties of h and v (the matrices Rh and Rv), we
below attempt to find a linear estimator ĥ = K0y, where K0 is in general a
matrix, that minimizes the error variance. Let Rh � E{hh∗}, Ry � E{yy∗},
Rv � E{vv∗}, and Rhy = R∗

yh = E{hy∗}. We also assume E{h} = 0 and
E{v} = 0. Then we obtain

E{(h−K0y)(h−K0y)∗} =

Rh −RhyK
∗
0 −K0Ryh + K0RyK

∗
0 =

[
I −K0

] [Rh Rhy

Ryh Ry

] [
I

−K∗
0

]
=

[
I −K0

] [I RhyR
−1
y

0 I

] [
Rh −RhyR

−1
y Ryh 0

0 Ry

] [
I 0

R−1
y Ryh I

] [
I

−K∗
0

]
=

[
I RhyR

−1
y −K0

] [Rh −RhyR
−1
y Ryh 0

0 Ry

] [
I

R−1
y Ryh −K∗

0

]
=

Rh −RhyR
−1
y Ryh + (RhyR

−1
y −K0)Ry(R

−1
y Ryh −K∗

0). (3.1.4)

In the above, we have used block triangular matrix factorization (see Ap-
pendix 3.A.1). Assuming that Ry > 0, it follows that (3.1.4) is minimized
when K0 = RhyR

−1
y . The corresponding channel estimate, denoted the mini-

mum mean square error (MMSE) solution is ĥ = RhyR
−1
y y. From the model
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(3.1.1) we have that Rhy = RhΦ
∗ and Ry = ΦRhΦ

∗ + Rv, assuming that h
and v are uncorrelated. Inserting these, we find the MMSE solution to be

ĥ = RhΦ
∗(ΦRhΦ

∗ + Rv)
−1y (3.1.5)

with mean square error (MSE)

E{(h− ĥ)(h− ĥ)∗} = Rh −RhyR
−1
y Ryh

= Rh −RhΦ
∗(ΦRhΦ

∗ + Rv)
−1ΦRh.

(3.1.6)

The above derivation (3.1.4) does not reveal the full power of the results
(3.1.5) and (3.1.6) and how they go beyond the estimate (3.1.3). What the
MMSE estimator gives us is actually a full description of our state of knowl-
edge about the quantity h. Common statistical theory, which talks about
unknown quantities as random variables and sees probabilities as imagined
frequencies, does not allow us to clearly see this. In the following, we will
refer to this classical interpretation of statistics as orthodox statistics or fre-
quentism. An alternative formulation of statistical theory, which regards
probability theory to be a direct extension to logic, however offers an inter-
pretation of the probability concept that bears a direct correspondence to
available information. This theory is commonly referred to as Bayesianism.
It shows us how to calculate a representation of our state of knowledge about
a parameter of interest (h), given some information (y) and background in-
formation (the model (3.1.1) plus covariance matrices). In the next section,
we give a short account on Bayesian probability theory.

3.2 Bayesianism

In this section we will give a brief account on Bayesian probability theory.
The two main tools in Bayesianism – Bayes’ theorem and marginalisation –
are presented, as well as the general method for conducting inference accord-
ing to the Bayesian school. We also take the opportunity to point out a few
differences in method between orthodoxy and Bayesianism. The ambition is
however not to give a comprehensive review of Bayesianism. We have previ-
ously given the subject more attention in [43], and we encourage interested
readers to read the book by Jaynes [44].

3.2.1 Probability

Probability theory operates on propositions, which we denote by capital let-
ters. A proposition is described by a statement, for example A=‘the Earth
is orbiting the Sun’, and by declaring A we declare that that statement is
true. Propositions conform to the axioms of logic:
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not not A is equivalent to A
A or B is equivalent to B or A
A or A is equivalent to A
A or (B or C) is equivalent to (A or B ) or C
not (A and B) is equivalent to not A or not B
A or (A and B) is equivalent to A

Using these axioms, a complicated chain of statements can be simplified to
a shorter and simpler form. The axioms of logic are however only helpful in
conducting deductive reasoning in which no element of uncertainty exists. In
real-world situations, statements of any sort can rarely be declared as being
absolutely true or absolutely false. Rather, we may know that a proposition
A is likely to be false, or that B is probably true. To be useful in practice, it
would therefore be highly desirable to be able to extend the axioms of logic
to hold also for such vague information.

The first steps to pursue this goal were taken more than two centuries
ago by Bayes and Laplace. In the 1930s, the theory was refined by Harold
Jeffreys, and then, in 1946, Richard Cox published a paper which proved that
probability theory can be seen as an extension to logic. Cox [45] introduced
the concept of plausibility1. Plausibility is a general measure of degree of
belief. The plausibility of a specific proposition will vary depending on what
other propositions we know to be true. For example, it is more plausible that
it is freezing outside if we know that it is winter, than if we are ignorant to
the time of year. In accordance with a notation introduced by John Maynard
Keynes in 1921, we will denote plausibilities by

A|B, (3.2.1)

meaning the plausibility of proposition A given that proposition B is true.
Bayesian theory defines a probability as a state of knowledge, whereas

in orthodox probability theory, probabilities represent observed or imagined
limiting frequencies. Cox aimed to show that rules for probability theory
interpreted in the Bayesian sense – rules that by the time of Cox already
had been employed as axioms by several generations of workers in the field
– could be derived from the axioms of classical logic by only adding a few
‘common sense’ requirements.

Cox stated these requirements as functional relationships between plau-
sibilities. Later, Edwin Jaynes [44] chose to reformulate these as verbal
statements, making the exposition easier to follow. We will adopt Jaynes’
view here, although we leave out the actual derivation.

1To be precise, Cox really used the term likelihood, but in modern statistical theory
the meaning of that notion has shifted.
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Jaynes uses three desiderata, starting with

(I) Degrees of plausibility are represented by real numbers.

We will adopt the convention that higher numbers correspond to higher plau-
sibilities, without further specifying the exact relationship. Jaynes discusses
other possibilities for constructing a theory for plausible reasoning, where
this desideratum is not needed. Instead he replaces desideratum (I) with two
more elementary ones where only comparisons between degrees of plausibil-
ities are needed,

(Ia)
If (A|X) ≥ (B|X) and (B|X) ≥ (C|X) then (A|X) ≥
(C|X), and

(Ib)
given A, B, C, one of (A|C) > (B|C), (A|C) = (B|C),
(A|C) < (B|C) must hold,

and argues that these are equivalent to desideratum (I), see [44, Appendix
A.3].

The second desideratum is concerned with how plausibilities change when
new data are obtained. If old information C is updated to new information
C ′ so that the plausibility for A is increased,

(A|C ′) > (A|C), (3.2.2)

while the plausibility for B stays the same,

(B|A, C ′) = (B|A, C), (3.2.3)

then common sense says that

(A, B|C ′) ≥ (A, B|C), (3.2.4)

and that

(A|C ′) < (A|C), (3.2.5)

where A denotes the logical complement of A, that is the proposition that
is always true when A is false and vice versa, and A, B means that A and
B are both true. The above ‘common sense’ requirements are expressed by
desideratum II :

(II) Qualitative correspondence with common sense.
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The third desideratum is divided into three statements, all having to do
with the consistency of the theory :

(IIIa)
If a conclusion can be reasoned out in more than one
way, then every possible way must lead to the same re-
sult.

(IIIb)
We must always take into account all of the evidence
available that is relevant to the problem.

(IIIc)
Equivalent states of knowledge must always be repre-
sented in the same way.

Somewhat surprisingly, these three desiderata are all that is needed to
derive a consistent theory for plausible reasoning. Although the scale of the
plausibility measure is completely arbitrary, Cox’ derivation revealed that
one can define functions operating on plausibilities, such that these functions
need to conform to quantitative rules. The most convenient is a function P (·)
that fulfills

P (A, B|C) = P (A|C)P (B|A, C) = P (B|C)P (A|B, C) (The product rule)

P (A|B) + P (A|B) = 1 (The sum rule)

The function P (A|B) is termed the probability of A given B. It has the
additional property that P (‘true statement’) = 1 and P (‘false statement’) =
0.

Summarizing, we have the following definitions:

Plausibility is a measure of belief isomorphic to the real
numbers, so that the plausibility can be either increased,
decreased or unaltered by new information.
Probability is a monotonic increasing function of plau-
sibility and obeys the product and sum rules, necessi-
tated by Cox´s desiderata.

An important point often neglected in the literature is that the func-
tion P (·) is not in any way a more correct probability definition than some
monotonously increasing mapping q(·) = f ◦ P (·). However, P has quali-
ties that make it preferable to other functions apart from the fact that the
sum and product rules look attractively simple. Knowing that there are, say,
seven red and three white balls in an urn, then our choice of function P gives
a probability 3/10 of a white ball being drawn. This certainly seems a sound
property for a definition of probability. In fact, Laplace used this property
as the definition of probability:
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The probability for an event is the ratio of the number of cases
favorable to it, to the number of all cases possible when nothing
leads us to expect that any one of these cases should occur more
than any other, which renders them, for us, equally probable.

We shall therefore adopt the same definition and choose the function P as
the definition for probability. One should however keep in mind that specific
probability values only possess relative meaning when connections to frequen-
cies cannot be made. Probability values can only tell whether a proposition
is more or less plausible than some other proposition.

For it is important to note that the present theory makes no references
to repeated experiments, observed frequencies, or hypothetically observed
frequencies. The definition of probability used here applies to all kinds of
propositions. Since the rules of probability follows directly from logic and
the three desiderata, probability according to Bayesianism is therefore an
extension of deductive reasoning.

Bayesianism also differs from orthodox probability theory in that there
is no such thing as an unconditional probability in Bayesianism. Whereas
one according to the orthodox school can talk about P (A), Bayesianism will
always require us to specify what information is available. Even if no cogent
evidence for A is present, there will always be some background information
at hand, such as a mathematical model and/or some vague, uninformative
prior probability distribution. We shall generally denote such prior informa-
tion by the symbol I.

Continuous variables

When conducting inferences about a continuous parameter θ, as most scien-
tific problem formulations would require us to do, we may define a mutually
exclusive set of propositions

Hk = ‘kΔθ ≤ θ < (k + 1)Δθ’, (3.2.6)

where Δθ is the size of the intervals represented by the propositions. We can
then define a function p(θ|I) so that

P (Hk|I) = p(θ|I)Δθ, θ = kΔθ. (3.2.7)

Letting the number of propositions go to infinity, so that Δθ goes to an in-
finitesimally small interval dθ, p(θ|I) becomes the probability density function
(pdf) of θ. From recursive application of the sum rule we see that a pdf must
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have the property that

p(θ|I) ≥ 0, and that∫ ∞

−∞
p(θ|I)dθ = 1.

In the above, we have assumed that θ is real-valued. If θ is an element of
some other set, we would take the integral over the entire domain of θ.

3.2.2 Tools in probability theory

From the sum and product rules we may derive more useful tools. Essentially
only two tools are needed to conduct general inferential calculus. Working
from a pdf with a set of parameters to the left of the conditioning bar and
another set of parameters to the right, Bayes’ theorem is used to switch
places between parameters on the respective sides of the conditioning bar,
while marginalisation is used to remove parameters from the left side of
the conditioning bar. Appropriately combining these two tools allows us
to produce a pdf that has parameters of interest on the left side of the
conditioning bar, and available data on the right.

Bayes’ theorem

By a simple rearrangement of the product rule, we get Bayes’ theorem:

P (X|D, I) = P (X|I)
P (D|X, I)

P (D|I)
(3.2.8)

Bayes’ theorem describes how to update our state of knowledge about a cer-
tain proposition X when we get some data D that is related to X in some
way. That is to say, starting with a representation of our prior knowledge
P (X|I), reception of information D lets us update this to P (X|D, I). Usu-
ally, we will have some physical relationship between X and D which makes
it easy to say what we know about D given that X is true (P (D|X, I)).
Bayes’ theorem is then used to switch places between these propositions.

Bayes’ theorem applies equally well to probability density functions as it
does to probabilities:

p(x|y, I) = p(x|I)
p(y|x, I)

p(y|I)
. (3.2.9)
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Marginalisation

For a set of mutually exclusive and exhaustive propositions H1, H2, . . . , HK

we can write

P (A, H1|I) + P (A, H2|I) + . . . + P (A, HK |I) = P (A|I). (3.2.10)

In the limit it holds that

p(x|I) =

∫
p(x, θ|I)dθ. (3.2.11)

The parameter θ that was eliminated by this so called marginalization is
called a nuisance parameter. Nearly every problem in probability theory
requires the use of marginalisation in this way to remove parameters that
are useful as intermediate parameters but are not of interest in the final
result.

Change of variables

It is common that a pdf p(x|I) is known but that we want to know a pdf
p(y|I) where x and y are related through some known functional relationship
y = f(x). We then need to perform a change of variables. Of course,
changing variables is not a method exclusive to bayesian probability theory,
but we mention it here because of its common usage in the field. It holds
that[46]

p(y|I) = p(x|I)

∣∣∣∣∂(x1, . . . , xm)

∂(y1, . . . , yn)

∣∣∣∣ |x=f−1(y), (3.2.12)

where
∣∣∣∂(x1,...,xm)

∂(y1,...,yn)

∣∣∣ is the Jacobian and m and n are the dimensions for x and

y, respectively. To take an example, let

p(x|I) = 1, 0 < x < 1, (3.2.13)

and let y = x2. Then

p(y|I) = p(x|I)

∣∣∣∣dx

dy

∣∣∣∣ |x=
√

y =
dx

2x dx
|x=

√
y = (4y)−1/2, 0 < y < 1.

(3.2.14)
Changing variables can become very complicated if the functions involved
are multidimensional and/or the mapping from x to y is not one-to-one.

The type of notation “p(x|I)” is unorthodox from a mathematical point
of view in that x is not only the free variabel in the function p(x|I), but
also a part of the function name. What if we want to evaluate p(x|I) at the
point x = y? How do we express it? p(y|I) will not do, because that would
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refer to a totally different function, namely the distribution for the variable y.
p(‘x = y’|I) could work but it would not mean the same thing as p(‘y = x′|I),
which would seem strange. To avoid confusion in such situations, one should
use a temporary function

fnc(x) = p(x|I), (3.2.15)

thus eliminating the risk for ambiguous meaning.

3.2.3 Priors

Looking at the product and sum rules on page 34, it is evident that a pdf
can only be deduced from other pdf:s. Hence there is the need for prin-
ciples that can produce the initial distributions required to “get started”.
These initial pdf:s must be based on – and only on – whatever information
we have beforehand. Such information is sometimes very vague and difficult
to describe in quantitative terms. So how do we calculate prior probability
densities (or simply priors) when seemingly there is almost no prior infor-
mation available? There are a number of principles available, see e.g. [43] for
a few examples. In the present thesis, the issue of prior assignment will be
restricted to priors for fading radio channels. Assuming that a good estimate
of the covariance matrix Rh for a multidimensional channel h is available,
we invoke the maximum entropy principle [44] which says that the least in-
formative prior distribution that we can assign given this particular piece of
information is zero-mean Gaussian:

p(h|I) = CN (h; 0,Rh). (3.2.16)

This is in fact the only prior we will need. One may object to the prior
(3.2.16) in that it assigns non-zero probability to any value of h, no matter
how high. In practice there must be an upper bound to h. However, trun-
cating the Gaussian would yield a non-Gaussian prior distribution, and this
would lead to calculatory problems, as we shall see later. The prior (3.2.16)
is therefore partly motivated on practical grounds.

3.2.4 How to make a decision

Priors define a ‘starting point’ of an inference problem. Then, through the
use of Bayes’ theorem and marginalisation, we may produce a ‘post-data’
(posterior) pdf for the parameter that we are interested in. But what do
we do with this pdf? The answer to this question depends on what type
of answer we ultimately seek. The perhaps most common type of inference
problem is the point estimation, in which we want to extract one single
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value from the posterior pdf. So, given the posterior pdf, which value do
we extract? Value judgment inevitably enters the theory at this point; our
estimation strategy will depend on what we are prepared to lose if we happen
to make the wrong guess. The theory behind all this is called decision theory
and it is a large field on its own. Looking for the estimate θ̂ of a parameter θ,
we construct a loss function L(θ, θ̂) that quantifies the loss associated with
making the wrong guess. One possible and common choice is then to choose
the estimator θ̂ that minimizes the expected loss∫

L(θ, θ̂)p(θ|D, I)dθ. (3.2.17)

The quadratic loss function

L(θ, θ̂) = (θ − θ̂)2 (3.2.18)

is by far the most commonly employed criterion and is reasonably the optimal
criterion to use in repeated scenarios, which typically arise in digital com-
munications problems. Minimizing the quadratic error conforms to choosing
the mean value of a pdf as estimate for that parameter,

θ̂ =

∫
θp(θ|D, I)dθ, (3.2.19)

which minimizes the expected value of the error (θ − θ̂)2.
Note however that using the quadratic loss function is not always appro-

priate. For example, in estimating the amount of rocket fuel that is required
to take an astronaut to the Moon and back, we want the estimate to be as
small as possible but not too small. A slight overestimation is alright, but
an underestimation would be disastrous. Also, θ may not be an element in
a metric space, in which case the error (θ − θ̂)2 cannot even be defined. To
illustrate, let θ be an element in a discrete set of models. Based on evidence
D, we wish to decide which model is the correct one. The difference between
two models however cannot be appropriately defined, and so (3.2.18) cannot
be used.

3.2.5 Model selection

So far we have considered assignment of prior pdf:s, the manipulation of pdf:s
by means of marginalisation and Bayes’ theorem, and taking a decision from
a posterior pdf. In most problems of inference however, we have a set of
data from which we wish to draw conclusions. It is then necessary to have a
model which relates the measured data D to the parameter(s) of interest θ:

D = f(θ, ξ). (3.2.20)
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Additional nuisance parameters ξ are also in general included in the model.
The posterior p(θ|D, I) can now be constructed by using the tools of prob-
ability theory and the principles for assigning priors. A general scheme for
Bayesian inference can be summarized as follows:

1. Construct a model (3.2.20),

2. assign priors,

3. use probability theory to derive the posterior pdf for θ given whatever
information is available, and

4. invoke decision theory to produce an answer to whatever question was
asked.

But then, how do we know how to set up the model in the first place?
Imagine that we have a set {Mk} of candidate models, and that we want
to evaluate them against one another based on evidence D. Using Bayes’
theorem, we have

P (Mk|D, I) = P (Mk|I)
p(D|Mk, I)

p(D|I)
. (3.2.21)

The set of models is discrete, so we will choose the model that gives the
highest value of the posterior P (Mk|D, I). This corresponds to using a loss
function that attributes the same penalization to every wrong estimate. Since
we only want to compare the probabilities of the different models we do not
need to calculate the denominator p(D|I). Also, in most cases we would
assign equal values to all prior probabilities P (Mk|I). Thus we have

P (Mk|D, I) ∝ p(D|Mk, I). (3.2.22)

The right-hand-side is usually called the likelihood of Mk and is sometimes
denoted L(Mk). Although marginalisation over a few nuisance parameters
may be required, L(Mk) is usually much easier to evaluate than the proba-
bility P (Mk|D, I).

Somewhat dishearteningly, there exists no formal procedure for model
selection. That is to say, once we have established a particular set of models,
then probability theory provides us with the means of telling which one is
best suited given a set of measurements, but we are still left in the dark when
it comes to choosing the original set {Mk}.

The model selection process therefore consists of first choosing a set of
models, and then evaluating the likelihood for each model given a set of data.
Taken that all models are assigned the same prior probability, we choose the
model that gives the highest likelihood.
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3.2.6 The methods of frequentism and Bayesianism

Problems of inference2 come in many different forms of which the most com-
mon ones are sampling theory, hypothesis testing, and parameter estimation.

Sampling theory is the theory of determining the probabilities for out-
comes (samples) in data series, discrete or continuous. Sampling theory is
seldom relevant to Bayesianism, except in the sense that sampling distri-
butions often occur inside calculations. It is however central to orthodox
statistics; in order to find the most likely values of some model parameters
given some data, the orthodox statistician uses sampling theory to calculate
the probability for the data that was actually received, as a function of the
model parameters, and then searches for the values of those parameters that
maximize the probability. This principle is called the maximum likelihood
principle. When no cogent prior information is available, and when the size
of the error in the final guess is irrelevant, the maximum likelihood solution
coincides with the Bayesian solution.

Hypothesis testing is the procedure of deciding which model that best
describes a given set of data. Model selection is an alternative name for
the same thing, although model selection often refers to estimation of the
model structure, while hypothesis testing usually concerns values of fixed
parameters in the model.

Parameter estimation is, as the name strongly indicates, the estimation
of one or many parameters from given data. Its output can either be specific
values, in which case one talks about point estimation, or intervals, which is
called interval estimation.

All problems of inference begin with a model relating the parameters of
interest with the data and possibly additional nuisance parameters,

D = f(θ, ξ), (3.2.23)

where the measured data D, the parameters of interest θ, and the nuisance
parameters ξ are generally vector valued.

The general method for obtaining information about θ varies depend-
ing on whether one confesses to the frequentist or the Bayesian school. In
frequentist theory, which method to use depends on the type of problem,
whereas in Bayesianism the same procedure for inference is applied regard-
less of the type of problem. Bayesianism therefore has one single approach to

2‘Inference theory’ in normally distinguished from ‘decision theory’; In Bayesianism,
the inference part of a problem is to produce the posterior of the parameter under consid-
eration, whereas the decision part amounts to determining the course of action from the
posterior. For an engineer it is of little interest to produce a pdf without any concrete
suggestion to a course of action coming out of the calculations, and so here we will be
careless about the terminology and talk about ‘inference’ when we mean the joint process
of inference and decision making.
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inference, while frequentism consists of a large number of methods. Below fol-
lows a short summary of methods used in the respective camps. Bayesianism:

1. Determine the model and the prior distributions.

2. Use the tools of probability theory to derive the posterior distribution.
In sampling theory the posterior is often given directly by the model and
the prior. Estimation and hypothesis testing often requires application
of Bayes’ theorem and marginalisation.

3. Investigate the posterior to produce the sought-after result. Point es-
timation is performed through the use of a loss function integrated
over the posterior (see Section 3.2.4). Interval estimation amounts to
finding an interval of the posterior distribution (usually the shortest
interval possible) having a certain area. Hypothesis testing can be seen
as a special case of parameter estimation. In hypothesis testing, it is
mostly common to choose the hypothesis having the highest probabil-
ity. It is equivalent to using a loss function that ascribes the same loss
to errors of any size. This estimate is called the Maximum A Posteriori
(MAP) estimate.

Frequentism:

• Point estimation of a parameter θ is commonly performed by using
intuition to invent an unbiased estimator θ̂(D) which is a function of
data D. It is then adjusted so that its mean value over the sampling dis-
tribution,

∫
θ̂(D)p(D|θI)dD, equals the parameter value θ. Note that

this may be quite different from the Bayesian least mean squares esti-
mate,

∫
θp(θ|D, I)dθ. Other orthodox parameter estimation methods

include the maximum likelihood method.

• Interval estimation also starts by inventing an estimator θ̂(D). The
sampling distribution p(θ̂) is then calculated. Technically, this is done
by a change of variables, p(θ̂)dθ̂ = p(D|θ)dD. Lastly, one finds the
least interval over which this distribution has an area of 0.9 or so.

• Hypothesis testing relies on a number of significance tests, for exam-
ple the χ2-test. The maximum likelihood method is another method,
which – if no cogent prior information is available and the loss function
prescribes the same value to any error, regardless of its size – produces
the same answer as the Bayesian approach.

Frequentist theory requires the division of model parameters into random
variables and deterministic but unknown parameters. Only random variables
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are allowed to have pdf:s. There exists no formal procedure for categorizing a
parameter as either random or deterministic. Conventionally, measured data
is taken to be random variables while all other parameters are considered de-
terministic. A rule of thumb is therefore to let that which is known (the data)
be random variables and let all other parameters – those that are the subject
of the inference in most cases – be deterministic. Conversely, the concept of
random/deterministic parameters bears no meaning in Bayesianism.

3.2.7 Why Bayesianism?

After this somewhat lengthy excursion into Bayesianism, one may enquire as
to what the significant difference between Bayesianism and classical statistics
actually is. After all, the rules of probability are the same in both schools.
Is not then the confession to one or the other merely a matter of ideology
with little practical relevance?

Actually, conclusions reached by the Bayesian method can be totally dif-
ferent from those attained by using conventional methods. Whereas infer-
ences drawn with aid of the Bayesian method is guaranteed to be consistent
with logic, orthodox statistics may leave you with unreasonable results. A
few examples were presented in [43]. The differences tend to be especially
large when cogent prior information is available. In the present thesis we
will study inferences of radio channels where new measurements are made
available on a regular basis, so that prior information quickly becomes ob-
solete, but there are still a number of reasons for choosing Bayesianism over
frequentism:

• Bayesianism always produces a full representation of one’s state of
knowledge (the pdf). This provides a quality measure of the infer-
ence in terms of how uncertain it is. The pdf is also necessary when
the parameter of interest has some complicated functional relationship
to parameters whose pdf has been found, so that a change of variables
need to be performed. With conventional statistical tools, an estimator
of the parameter of interest may have to be invented from intuition,
which may be very difficult to do, and the quality of such an estimator
cannot be guaranteed.

• Bayesianism offers one single method for inference. Orthodoxy offers
many, and they generally yield different answers.

• Bayesianism does not equate probabilities with frequencies of any sort.
A frequency distribution is a measurable quantity just as any physical
property, so that a Bayesian can talk about pdf:s for frequency distri-
butions. This is useful in a context such as digital communications,
where frequency distributions abound.
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• We will later be interested in examining the behaviour of channel esti-
mates of a special kind. These estimates are based on a certain amount
of data, but we will have to infer them before all of this data is avail-
able. One could say that we are interested in a parameter θ given
evidence D1, given evidence D2. A framework like Bayesianism that is
always specific about background information will serve us well when
conducting inference in involved problems like these.

• A central element in the Kalman filter, that will be studied shortly,
is a matrix that we will denote by the symbol Pt|t. In Bayesianism,
this matrix is straightforwardly interpreted as the covariance matrix
for the posterior distribution of the so called state vector, allowing it
to be used as an uncertainty measure or for changing variables. In
orthodox statistics however, the interpretation of Pt|t depends on the
nature ascribed to the state vector. If the state vector can be said to
be of a random nature, then Pt|t is interpreted in the same way as in
Bayesianism, but if the state vector is said to be deterministic (e.g. if
it is known to be constant), then Pt|t is not allowed this interpretation.
This is a pity, because it may withhold from us the opportunity to
conduct inferences that are consistent with logic.

3.3 The MMSE solution

Returning now to the problem of finding an estimate ĥ of h in (3.1.1), we
apply Bayes’ theorem and find

p(h|y, I) ∝ p(y|h, I)p(h|I)

= CN (y; Φh,Rv)× CN (h; 0,Rh)

∝ exp

(
−1

2

(
(y− Φh)∗R−1

v (y − Φh) + h∗R−1
h h

))
,

(3.3.1)

where CN (·) is the multivariate circular symmetric complex Gaussian dis-
tribution defined in Appendix 3.B.1. Note that we have saved ourselves the
trouble of calculating the denominator p(y|I) in Bayes’ theorem since it is
independent of h and therefore just constitutes a normalization factor. If
needed, the proper normalization factor can at any time be calculated from
the exponent of the Gaussian distribution. By completing the squares with
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respect to h, we obtain

p(h|y, I) ∝

exp

(
−1

2

(
h∗Φ∗R−1

v Φh + h∗R−1
h h− y∗R−1

v Φh− h∗Φ∗R−1
v y + y∗R−1

v y
))

= exp

(
−1

2

(
h∗(Φ∗R−1

v Φ + R−1
h )h− y∗R−1

v Φh− h∗Φ∗R−1
v y + y∗R−1

v y
))

= exp

(
−1

2

(
(h− ĥ)∗R−1

h̃
(h− ĥ)− ĥ∗R−1

h̃
ĥ + y∗R−1

v y
))

(3.3.2)

where ĥ = (Φ∗R−1
v Φ +R−1

h )−1Φ∗R−1
v y and R−1

h̃
= (Φ∗R−1

v Φ +R−1
h ). Hence,

the posterior of h is

p(h|y, I)

= CN (h; (R−1
h + Φ∗R−1

v Φ)−1Φ∗R−1
v y, (R−1

h + Φ∗R−1
v Φ)−1) (3.3.3)

= CN (h;RhΦ
∗(ΦRhΦ

∗ + Rv)
−1y,Rh −RhΦ

∗(ΦRhΦ
∗ + Rv)

−1ΦRh).
(3.3.4)

In the last equality, we have used (3.A.5) and (3.A.7) in Appendix 3.A.2.
The MMSE solution is given by the mean value of the pdf (3.3.3) or (3.3.4).
The latter is the most common formulation of the MMSE solution, consistent
with (3.1.5) and (3.1.6).

The formulation (3.3.3) is sometimes referred to as an information form
of the MMSE filter. When R−1

h = 0 in (3.3.3), which means that no relevant
prior info is available, and Rv = σ2

vI for some variance σ2
v , so that the noise

is white with equal variance in all of its components, the MMSE solution
coincides with the LS solution (3.1.3), as is easily seen from the information
form.

The MMSE solution is a very powerful result in that it is a fairly simple
expression and uses all available data in an optimal manner. However, since
it requires multiplications and inversions of matrices of size N , where N is
the length of the measurement vector y, its complexity is O(N3), which may
be extremely high. Moreover, if new data arrives so that y grows, then the
MMSE solution as expressed by (3.3.4) and (3.3.3) does not immediately
provide us with a way to incorporate this new data without carrying out
the calculation all from the beginning. Furthermore, the vector of channel
coefficients h may also be growing with time. In channel estimation and pre-
diction, incorporation of new data is essential, so we will require a framework
that allows a periodic addition of new evidence and parameter space without
the complexity of the algorithm growing out of proportions.
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3.4 Inference based on state space models

Throughout this thesis we shall let a linear discrete-time state space model
describe a time varying multidimensional channel ht:

xt+1 = Fxt + Gut, (3.4.1)

ht = Hxt, (3.4.2)

with the measurements described by

yt = Φtht + vt = Jtxt + vt, (3.4.3)

where Jt = ΦtH. The process noise ut, the measurement noise and interfer-
ence vt, and the initial state x0 are multivariate circular symmetric complex
Gaussian, and

E{

⎡
⎣ui

vi

x0

⎤
⎦
⎡
⎢⎢⎣
uj

vj

x0

1

⎤
⎥⎥⎦
∗

} =

⎛
⎝Qδij 0 0 0

0 Rδij 0 0
0 0 Π 0

⎞
⎠ , (3.4.4)

where Q > 0, R > 0, and Π > 0.
Comparing the state-space model (3.4.1), (3.4.2), (3.4.3) with the static

model (3.1.1), we may consider the case where h and y in (3.1.1) correspond
to a single time step in the state-space model. The advantage of the state-
space model is then that it takes into account earlier measurements that aid
in the estimation of h.

More interestingly, we may consider the case where h and y comprise sev-
eral time steps in the state-space formulation, so that e.g. h = [hT

0 , . . . ,hT
t ]T

and y = [yT
0 , . . . ,yT

t ]T . The optimal estimate of h is given by the mean
value of (3.3.4) with the covariance matrices Rh and Rv and the regressor
matrix Φ being given implicitly by the state-space model, but this comes at
a considerable computational complexity (cubic in the length of y).

It has been shown that fading radio channels can be well represented by
linear dynamic models [47],[4]. The reason for letting a discrete-time state
space model represent the fading radio channel is practical; the state-space
model expresses the channel in a way so that the next state depends only on
the current state. In the next section we will see how this property allows
optimal inferences about the channel state to be drawn in a recursive way, so
that the numerical complexity of optimal channel estimation and prediction
is linear in the number of measurements (to be compared with the cubic
complexity of the MMSE estimator in Section 3.3).

As the state space model is motivated on practical grounds, so is the
choice of Gaussian priors with known covariance matrices for the processes
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{ut}, {vt}, and x0, because these properties have to be assumed to allow for
an optimal inference formulation. One could certainly argue that the pdf:s
for some or all of these processes should have upper bounds over which they
should have no support, but that would lead to non-Gaussian distributions,
which, as we will see presently, would prevent recursive inference to be carried
out.

In the following discussion, the equations (3.4.1)–(3.4.4) constitute our
prior information I.

3.4.1 Optimal estimation

The state vector xt represent the full dynamics of the channel ht. We there-
fore wish to infer the state vector from available measurements, and this
should be done in an iterative manner, so that p(xt|y0, . . . ,yt, I) can be up-
dated to p(xt+1|y0, . . . ,yt+1, I) when a new measurement arrives. Following
[48] and denoting {y0, . . . ,yt} � Yt, we find by the use of Bayes’ theorem
and marginalization that

p(xt+1|Yt+1, I) = p(xt+1|yt+1,Yt, I) =

p(xt+1|Yt, I)
p(yt+1|xt+1,Yt, I)

p(yt+1|Yt, I)
=

p(yt+1|xt+1, I)p(xt+1|Yt, I)∫
p(yt+1|xt+1, I)p(xt+1|Yt, I)dxt+1

=∫
p(yt+1|xt+1, I)p(xt+1|xt, I)p(xt|Yt, I)dxt∫∫

p(yt+1|xt+1, I)p(xt+1|xt, I)p(xt|Yt, I)dxtdxt+1

. (3.4.5)

We have expressed the original pdf p(xt+1|Yt+1, I) in terms of p(yt+1|xt+1, I),
which is given by the measurement equation (3.4.3); p(xt+1|xt, I), which is
given by the state equation (3.4.1); and p(xt|Yt, I), which we assume is
known, since we seek a recursive update of the distribution for the state
vector. By the model (3.4.1)–(3.4.4), all these pdf:s are Gaussian. The
multiplications, integrations, and division in (3.4.5) will preserve Gaussianity
so that also p(xt+1|Yt+1, I) is Gaussian and can be written on the form

p(xt+1|Yt+1, I) = CN (xt+1; x̂t+1|t+1,Pt+1|t+1). (3.4.6)

We therefore seek to find the mean value x̂t+1|t+1 and the covariance matrix
Pt+1|t+1.

In the above, observe the notation that we will use throughout this thesis:
in subscripts of the type t|t0, t indicates the current time while t0 indicates
that measurements up to and including time t0 is available.
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Carrying out the marginalizations in (3.4.5) using the result of Appendix
3.B.2, we find

p(xt+1|Yt+1, I) =(∫
CN (yt+1;Jt+1xt+1,R)× CN (xt+1;Fxt,GQG∗)

× CN (xt; x̂t|t,Pt|t)dxt

)
/
(∫∫

CN (yt+1;Jt+1xt+1,R)

× CN (xt+1;Fxt,GQG∗)× CN (xt; x̂t|t,Pt|t)dxtdxt+1

)
=

CN (yt+1;Jt+1xt+1,R)× CN (xt+1;Fx̂t|t,FPt|tF∗ + GQG∗)
CN (yt+1;Jt+1Fx̂t|t,Jt+1(FPt|tF∗ + GQG∗)J∗t+1 + R)

. (3.4.7)

It should be noted that the fact that the above marginalization could be
carried out symbolically leaned on the assumption of linear models (3.4.1),
(3.4.2) and (3.4.3), as well as the assignment of Gaussian distributions to
{ut}, {vt}, and x0. Non-linear models and/or non-Gaussian distributions
for the processes {ut}, {vt}, and x0 would generally permit a symbolic cal-
culation of p(xt+1|Yt+1, I).

By completing the squares with respect to xt+1 in (3.4.7) along the lines
of [48], yields, after quite some algebra,

x̂t+1|t+1 = Fx̂t|t + AtJ
∗
t+1(Jt+1AtJ

∗
t+1 + R)−1(yt+1 − Jt+1Fx̂t|t), and

Pt+1|t+1 = At −AtJ
∗
t+1(Jt+1AtJ

∗
t+1 + R)−1Jt+1At,

(3.4.8)

where At = FPt|tF∗ + GQG∗. By (3.4.6), the pair (x̂t+1|t+1,Pt+1|t+1) de-
fine the probability density function for the state vector at time t + 1 given
measurements up to and including time t + 1.

Again, since we have used only the rules of probability we know that
(3.4.8) is in every way consistent with logic. The solution illuminates a
couple of facts. Firstly, if the process {ht} can be modelled on state space
form, we see that there does exists an expression that lets us carry out the
update

p(xt|Yt, I)→ p(xt+1|Yt+1, I). (3.4.9)

Secondly, the model matrices {F,G,Jt,Q,R} are allowed to be time varying
without impacting the optimality of the algorithm. In our case, we shall only
require Jt to be time varying.

The solution (3.4.8) is given by the Kalman filter (KF) which R. Kalman
derived in his seminal 1960 paper, although he used a somewhat different
approach.
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3.4.2 A geometric formulation

The calculations leading to (3.4.8) is tailored to the specific problem of finding
the pdf for xt given measurements Yt. If we would be interested in a slightly
different formulation, say to find the pdf for xt+10, then we would have to
carry out a corresponding derivation, using Bayes’ theorem all over again.
In later chapters, we will require a flexible framework that will let us derive
pdf:s for channel estimates and predictions for arbitrary prediction ranges.
Instead of using Bayes’ theorem and marginalization, pdf:s may be derived
using a geometric approach [49], which is more appealing to intuition and will
prove to be very flexible. Recall that an inner product obeys the following
rules:

1. Linearity: 〈α1x1 + α2x2,y〉 = α1〈x1,y〉+ α2〈x2,y〉
for any α1, α2 ∈ C.

2. Reflexivity: 〈x,y〉 = 〈y,x〉∗.

3. Nondegeneracy: 〈x,x〉 = 0⇔ x = 0.

Noting that the cross-correlation operation E{xy∗} conforms to these rules,
we define the inner product

〈x,y〉 � E{xy∗}. (3.4.10)

This inner product lets us regard unknown vectors as elements in an inner
product space. A couple of facts should be noted regarding the inner product
(3.4.10):

• 〈x,y〉 is generally a rectangular matrix.

• x and y need not have the same length.

That is, all vectors, regardless of length, live in the same inner product space
with inner product defined according to (3.4.10). We stress the rather un-
usual fact that this inner product is not scalar, which is otherwise a property
that is assumed for inner products by most textbooks and papers. Among
the sparse literature that do consider matrix-valued inner products, see e.g.
[50]. Inner product spaces are normed spaces and we define

‖x‖2 � 〈x,x〉. (3.4.11)

A norm can then be defined as a Cholesky factor of ‖x‖2, e.g. the unique
lower triangular Cholesky factor. However, we shall only find use for the
squared norm and so we do not need to uniquely define a norm.
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With this formalism, covariance matrices can be handled algebraically as
inner products, which provides convenient tools for manipulation of signals
and optimization of estimates.

In the above, we are actually allowing ourselves a small degree of careless-
ness regarding notation. In Section 3.2.1 we were eager to point out that it is
central to Bayesianism to be specific about what information underlies an in-
ference process. Yet, when defining the inner product (3.4.10), no such speci-
fication was made. In most uses of the inner product notation it will however
be clear what the background information is. When we speak of vectors that
are not estimates of other vectors we will be referring to prior distributions, so
that for example 〈xt,ut〉 = E{xtu

∗
t |I}. When we operate on vectors referring

to estimates, the background information is defined by the variable names
themselves, e.g. 〈x̂t+2|t−1, x̂t+1|t−1〉 = E{x̂t+2|t−1x̂

∗
t+1|t−1|Yt−1, I}. The care-

less notation does however illuminate another fact: the inner product space
is not actually home to vectors such as x and y, but rather to probability
entities such as (x|I) and (y|I), i.e. vectors in combination with background
information. Whereas a “normal” (Euclidean) vector space can house vec-
tors all having the same length, an inner product space of the kind presented
here can contain vectors (probability entities) of different lengths, but only if
they all have the same background information I.

In accordance with the MSE minimization (3.1.4) we will seek an estimate
x̂ of a vector x, expressed as a linear combination of the measurements, that
minimizes the mean value of the error

x̃ � x− x̂. (3.4.12)

With the geometric formulation of the problem, the optimal estimate is then
the projection of the parameter of interest onto the subspace spanned by
given data:

x̂ = projection of x onto L{y0,y1, . . . ,yt}, (3.4.13)

where L{y0,y1, . . . ,yt} is the linear subspace spanned by {y0,y1, . . . ,yt}.
By construction, this means that 〈x̂, x̃〉 = 0.

The concept of projection suggests the use of the Gram-Schmidt pro-
cedure. The Gram-Schmidt procedure finds an orthogonal basis {et} that
spans the same subspace as a generally non-orthogonal set of vectors {yt}.
Once this basis has been found, finding a projection is a simple matter of
summing the individual projections of the vector onto the respective base
vectors:

x̂ =
t∑

i=0

〈x, ei〉R−1
e,i ei, (3.4.14)

where Re,i = ‖ei‖2.
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In the Gram-Schmidt procedure, the orthogonal basis {et} is found by
iteratively forming normals to hyperplanes spanned by earlier base vectors:

e0 = y0,

e1 = y1 − 〈y1, e0〉R−1
e,0e0,

e2 = y2 − 〈y2, e1〉R−1
e,1e1 − 〈y2, e0〉R−1

e,0e0,

e3 = y3 − 〈y3, e2〉R−1
e,2e2 − 〈y3, e1〉R−1

e,1e1 − 〈y3, e0〉R−1
e,0e0,

and so on. The number of terms seems to be growing with time, but owing
to the state space formulation we can write

et = yt −
t−1∑
i=0

〈yt, ei〉R−1
e,i ei = yt − Ji

t−1∑
i=0

〈xt, ei〉R−1
e,i ei, (3.4.15)

where we have exploited the measurement equation (3.4.3) which gives that
〈yt, ei〉 = Jt〈xt, ei〉 (note that xt and ei do not generally have the same
length). The sum in (3.4.15) is identified as

t−1∑
i=0

〈xt, ei〉R−1
e,i ei = proj(xt,L{y0, . . . ,yt−1}) � x̂t|t−1, (3.4.16)

where proj(xt,L{y0, . . . ,yt−1}) is the projection of xt onto the linear sub-
space L{y0, . . . ,yt−1} so that

et = yt − Jtx̂t|t−1. (3.4.17)

The process {et} is called the innovations. By construction, the innovations
are white: 〈ei, ej〉 = 0, i �= j. The innovations form an orthogonal basis
spanning the same subspace as the measurements, i.e.

L{y0, . . . ,yt} = L{e0, . . . , et}. (3.4.18)

for any t. Since x̂t+1|t ∈ L{e0, . . . , et}, it holds that 〈x̂t+1|t, ei〉 = 0 when
i > t.

Letting the parameter of interest, x, be the state vector one time step into
the future, that is xt+1, we see from (3.4.14) that the optimal estimate x̂t+1|t
is a function of et (and earlier innovations), while et in turn is a function of
x̂t|t−1. It is therefore possible to find a recursive update

x̂0|−1 → e0 → x̂1|0 → e1 → x̂2|1 → . . .

Projecting the one-step predictions onto the innovation vectors, we see that
we can write

x̂t+1|t =
t∑

i=0

〈xt+1, ei〉R−1
e,i ei =

t−1∑
i=0

〈xt+1, ei〉R−1
e,i ei +〈xt+1, et〉R−1

e,t et. (3.4.19)
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From the state equation (3.4.1) we see that 〈xt+1, et〉 = F〈xt, et〉 so that

x̂t+1|t = Fx̂t|t−1 + F〈xt, et〉R−1
e,tet. (3.4.20)

Optimal one-step predictions are therefore found by starting with an initial
prediction x̂0|−1 and then alternately compute innovations (3.4.17) and pre-
dictions (3.4.20). It remains to calculate 〈xt, et〉 and Re,t, which should also
be done in a recursive manner. The key to doing this is to express the two
quantities in terms of the covariance matrix for the one-step estimation error,
‖x̃t|t−1‖2.

First, note that by (3.4.3) and (3.4.17) we can write

et = Jtx̃t|t−1 + vt. (3.4.21)

Defining
‖x̃t|t0‖2 � Pt|t0 , (3.4.22)

it then follows that
‖et‖2 = JtPt|t−1J

∗
t + R (3.4.23)

and, by linearity of the inner product,

〈xt, et〉 = 〈x̂t|t−1 + x̃t|t−1,Jtx̃t|t−1 + vt〉 = Pt|t−1J
∗
t . (3.4.24)

We now require a recursion for Pt|t−1. To find this recursion, we make
the following definitions:

Definition 3.4.1 (Covariance matrices for the state vector and state esti-
mate vector). The covariance of the state vector is defined as

Πt � ‖xt‖2. (3.4.25)

The covariance of the state estimate vector is defined as

Σt|t0 � ‖x̂t|t0‖2. (3.4.26)

Defining
Kf,t � 〈xt, et〉R−1

e,t (3.4.27)

and
Kp,t � FKf,t, (3.4.28)

we can then easily prove the following theorem:

Theorem 3.4.1 (Recursions for the state and one-step state prediction
covariance matrices). Consider Definition 3.4.1 and the model (3.4.1)–(3.4.4).
Then it holds that

Πt+1 = FΠtF
∗ + GQG∗, (3.4.29)

and that
Σt+1|t = FΣt|t−1F

∗ + Kp,tRe,tK
∗
p,t. (3.4.30)
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Proof. The recursion (3.4.29) follows from (3.4.1) and the fact that 〈xt,ut〉 = 0.
The recursion (3.4.30) follows from (3.4.20) and the fact that 〈x̂t|t−1, et〉 = 0.

Since 〈x̂t|t0 , x̃t|t0〉 = 0, it must hold that

Πt = Σt|t0 + Pt|t0. (3.4.31)

Using Theorem 3.4.1 and (3.4.31) for the special case t0 = t − 1, we get a
recursion for Pt:

Pt+1|t = Πt+1|t − Σt+1|t
= F(Πt|t−1 − Σt|t−1)F

∗ + GQG∗ −Kp,tRe,tK
∗
p,t

= FPt|t−1F
∗ + GQG∗ −Kp,tRe,tK

∗
p,t.

(3.4.32)

We can now summarize the Gram-Schmidt procedure in the form of the
KF recursions (3.4.23), (3.4.28), (3.4.17), (3.4.20), and (3.4.32):

Re,t = JtPtJ
∗
t + R,

Kp,t = FPt|t−1J
∗
tR

−1
e,t ,

et = yt − Jtx̂t|t−1,

x̂t+1|t = Fx̂t|t−1 + Kp,tet,

Pt+1|t = FPt|t−1F
∗ + GQG∗ −Kp,tRe,tK

∗
p,t,

initialized with known prior mean value x̂0|−1 and prior error covariance
matrix P0|−1. As an extra measure of convenience, the procedure can be
divided into a measurement update step and a time update step:

• Kalman gain calculation:

Re,t = JtPtJ
∗
t + R (3.4.33)

Kf,t = Pt|t−1J
∗
tR

−1
e,t (3.4.34)

• Measurement updates:

et = yt − Jtx̂t|t−1 (3.4.35)

x̂t|t = x̂t|t−1 + Kf,tet (3.4.36)

Pt|t = (I−Kf,tJt)Pt|t−1 (3.4.37)

• Time updates:

x̂t+1|t = Fx̂t|t (3.4.38)

Pt+1|t = FPt|tF
∗ + GQG∗ (3.4.39)
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From the Kalman recursion we may also easily derive a recursion for the
filtered state estimation vector:

x̂t+1|t+1 = Fx̂t|t + Kf,t+1et+1 (3.4.40)

as well as a recursion for the covariance matrix for the filtered state estimation
error vector:

Pt+1|t+1 = FPt|tF
∗ + GQG∗ −Kf,t+1Re,t+1K

∗
f,t+1. (3.4.41)

When studying channel estimation and prediction, it may be of interest
to generate channel estimates/predictions from channel measurements. It is
then useful to rearrange a few equations in the KF recursions and formulate
a state space model for the state estimates:

x̂t+1|t = Fx̂t|t−1 + FKf,tet,

yt = Jtx̂t|t−1 + et.
(3.4.42)

Note however, that the “process noise” and “measurement noise” in this
model is the same process {et} with covariance matrix Re,t.

3.4.3 Prediction and smoothing

The state equation (3.4.1) makes KF prediction trivial. Assuming t ≥ t0,
optimal predictions are found recursively by

x̂t+1|t0 =

t0∑
i=0

〈xt+1|t0 , ei〉R−1
e,i ei = F

t0∑
i=0

〈xt|t0 , ei〉R−1
e,i ei = Fx̂t|t0 , (3.4.43)

and we assume that the filtered state estimation x̂t0|t0 is known. When the
state transition matrix F is time static, we have that

x̂t|t0 = Ft−t0 x̂t0|t0 . (3.4.44)

The recursion for the many-step state prediction covariance matrix follows
directly from (3.4.43):

Σt+1|t0 = FΣt|t0F
∗, (3.4.45)

initialized e.g. with Σt0+1|t0 which is given by Theorem 3.4.1.
The many-step state prediction error covariance matrix is also calculated

recursively:

Pt+1|t0 = ‖x̃t+1|t0‖2 = ‖Fx̃t|t0 + Gut‖2 = FPt|t0F
∗ + GQG∗, (3.4.46)

initialized e.g. with Pt0+1|t0 obtained with (3.4.32).
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In Chapter 7, we will need to know the prior pdf for a predicted state
vector x̂t|t0 . Since the process noise ut, the measurement noise vt, and the
initial state x0 are zero-mean processes, it follows that E{x̂t|t0 |I} = 0. The
state prediction covariance matrix is given by (3.4.45). The prior pdf for
predicted state vector can then be written

p(x̂t|t0 |I) = CN (x̂t|t0 ; 0, Σt|t0). (3.4.47)

The case t < t0 is called a smoothing problem. Kalman smoothing is not
as straightforward as prediction and there are many variants to smoothing
formulas. In this thesis, we will only be interested in calculating the state
covariance matrices, which we find with the Bryson-Frazier formulas [51],
presented here without proof:

Pt|t0 = Pt|t−1 −Pt|t−1Λt,t0Pt|t−1, (3.4.48)

where Λt,t0 is calculated recursively in reversed time through

Λτ,t0 = F∗p,τΛτ+1,t0Fp,τ + J∗τR
−1
e,τJτ , Λt0+1,t0 = 0, (3.4.49)

with Fp,t defined by
Fp,t = F(I−Kf,tJt). (3.4.50)

With the Kalman recursions and the prediction and smoothing formulas,
the full pdf of a state vector xt given measurements up to and including time
t0 are given by the mean value x̂t|t0 and the covariance matrix Pt|t0 :

p(xt|y0, . . . ,yt0 , I) = CN (xt; x̂t|t0 ,Pt|t0). (3.4.51)

3.5 Summary

In this chapter we have shown that inferences derived with the tools of prob-
ability theory are consistent with an extended logic. The Kalman filter (KF)
was shown to be a special case of such inference. We also took the opportu-
nity to derive the KF from a geometric approach, which hopefully gave the
reader an intuitive feeling for the ubiquitous usefulness of the KF. So long
as a fading channel or a sum of fading channels can be described on linear
discrete-time state space form, the KF will always output a complete rep-
resentation of our state of knowledge regarding the channel(s). This makes
the KF an incredibly flexible instrument that can be used in many sorts of
intricate problems. And our needs will be intricate; in Chapter 5, we consider
irregular training signal designs (referred to as pilot patterns shortly), which
necessitates the use of time-variant filters; in Chapter 6, we consider the re-
ception of simultaneous signals coming from multiple sources, meaning that
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superpositions of signals need to be modelled and inferred; and in Chapter
7 we study how probability density functions produced by the KF should be
used properly.
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3.A Some matrix results

3.A.1 Block triangular factorization

Consider a block matrix [
A B
C D

]
, (3.A.1)

where A and D are invertible. Then it holds that[
A B
C D

]
=

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
, (3.A.2)

which is easily verified by carrying out the multiplication. The quantity
A−BD−1C is called the Schur complement to D. Since[

I BD−1

0 I

]−1

=

[
I −BD−1

0 I

]
and

[
I 0

D−1C I

]−1

=

[
I 0

−D−1C I

]
,

(3.A.3)
we may also easily derive a block factorization of the inverse of (3.A.1):[

A B
C D

]−1

=

[
I 0

−D−1C I

] [
(A−BD−1C)−1 0

0 D−1

] [
I −BD−1

0 I

]
.

(3.A.4)

3.A.2 The matrix inversion lemma and variants

For non-singular matrices A and C it holds, given that all matrices have
appropriate dimensions, that

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1. (3.A.5)

This result, commonly referred to as the matrix inversion lemma (or the
Woodbury matrix identity), is so commonly used in linear algebra that is
sometimes called just “the lemma”.

A simple rearrangement of (3.A.5) gives the following result:

B(C−1 + DA−1B)−1D = A−A(A + BCD)−1A (3.A.6)

The following result will be useful:

(A + BCD)−1B = A−1B(C−1 −DA−1B)−1C−1. (3.A.7)

This can be proved as follows:

B + BCDA−1B = B + BCDA−1B

BC(C−1 + DA−1B) = (A + BCD)A−1B

(A + BCD)−1B = A−1B(C−1 + DA−1B)−1C−1
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In a similar manner,

CD(A + BCD)−1 = (C−1 + DA−1B)−1DA−1, (3.A.8)

which follows from

D + DA−1BCD = D + DA−1BCD

(C−1 + DA−1B)CD = DA−1(A + BCD)

CD(A + BCD)−1 = (C−1 + DA−1B)−1DA−1.

3.B Properties of the Gaussian distribution

3.B.1 Definition

The multivariate circular symmetric complex Gaussian (sometimes just Gaus-
sian for short) distribution for x ∈ Cn×1 with mean value μ ∈ Cn×1 and
positive definite covariance matrix Σ ∈ Cn×n is defined by

CN (x; μ, Σ) � π−n|Σ|−1 exp

(
−1

2
(x− μ)∗Σ−1(x− μ)

)
. (3.B.1)

3.B.2 Marginalization

Consider a multivariate Gaussian parameter vector x with mean value Aμ

and covariance Σ, and that we are uncertain as to the value of μ. We assign
a Gaussian distribution to μ with mean value μ0 and covariance Σ0. What
is then the distribution for x? Carrying out the marginalization, we have

p(x|μ0,A, Σ, Σ0, I) =

∫
CN (x;Aμ, Σ)× CN (μ; μ0, Σ0)dμ

∝
∫

exp

⎛
⎝−1

2

⎛
⎝(Aμ− x)∗Σ−1(Aμ− x) + (μ− μ0)

∗Σ−1
0 (μ− μ0)︸ ︷︷ ︸

c

⎞
⎠
⎞
⎠ dμ

(3.B.2)

Examining now the exponent (except the factor -1/2) c, we can complete the
squares and write it as

c = (μ−α)∗(A∗Σ−1A + Σ−1
0 )(μ−α)

−α
∗(A∗Σ−1A + Σ−1

0 )α + x∗Σ−1x + μ
∗
0Σ
−1
0 μ0︸ ︷︷ ︸

β

, (3.B.3)



Chapter 3. Linear filtering and inference theory 59

with α = (A∗Σ−1A+Σ−1
0 )−1(A∗Σ−1x+Σ−1

0 μ0). Carrying out the integration
over μ, the first term in (3.B.3) evaluates to a constant independent of x and
μ0. The remaining three terms β can be written

β = x∗(Σ−1 − Σ−1A(A∗Σ−1A + Σ−1
0 )−1A∗Σ−1)x

+ μ
∗
0(Σ

−1
0 − Σ−1

0 (A∗Σ−1A + Σ−1
0 )Σ−1

0 )−1
μ0

− x∗Σ−1A(A∗Σ−1A + Σ−1
0 )−1Σ−1

0 μ0

− μ
∗
0Σ

−1
0 (A∗Σ−1A + Σ−1

0 )−1A∗Σ−1x

(3.B.4)

Using (3.A.5), (3.A.6), and (3.A.7) on the respective terms in (3.B.4), we see
that

β = (x−Aμ0)
∗(Σ + AΣ0A

∗)−1(x−Aμ0) (3.B.5)

so that

p(x|μ0,A, Σ, Σ0, I) = CN (x;Aμ0, Σ + AΣ0A
∗). (3.B.6)





Chapter 4
Modelling MIMO-OFDMA systems

4.1 Introduction

Modern wireless cellular system concepts should be general enough to sup-
port user equipments (UEs) with a wide range of data transfer requirements,
ranging from relatively simple devices requiring only a very limited transfer
rate, to advanced devices with the need for supporting high speed data trans-
fer. A UE in such a system is characterised by a large number of factors, such
as its Signal-to-Noise Ratio SNR, its speed, its power availability, the num-
ber of antenna element it uses, its channels’ frequency selectivity and fading
characteristics, its hardware complexity, and so on. This diversity makes
system design complex. Using different frequency bands and transmission
techniques for different kinds of UEs is an option, but the sheer number of
relevant characteristics makes that kind of solution unnecessarily inflexible
and wasteful with the bandwidth resource.

Furthermore, with the introduction of MIMO techniques combined with
opportunistic scheduling and link adaptation in wireless cellular systems, the
need for simultaneously supporting many UEs with widely varying charac-
teristics over the same frequency band is becoming evident. Whereas one
UE may be stationary (nomadic) and indoor, featuring a frequency-selective
but non-fading channel, another may have a high velocity and line-of-sight.
Differences in requirement, complexity, and power availability may cause
one UE to prefer a low output power and/or sending few reference symbols
(henceforth pilots) while another may prefer sending many, possibly with
high power.

To support channel equalization, link adaptation, and scheduling, the
unknown fading radio channel needs to be inferred. Methods for channel
estimation may be blind or pilot assisted. Throughout this thesis we shall
assume pilot assisted channel estimation and prediction. To enable separate
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estimation of channels from multiple transmit antennas (henceforth inputs),
which is required in MIMO systems, a straightforward approach is to use
disjoint sets of pilots for all inputs and all UEs. A problem is however that
each input will then occupy somewhere between 5 and 10 percent of the
resources, and this could quickly lead to training data taking over the whole
bandwidth.

A different approach is to place pilots from different inputs at the same
sub-locations, hence letting them overlap. The drawback of this approach is
an increased filter complexity and possibly a reduced estimation and predic-
tion performance. The advantage is that pilot overhead will not be affected
by the number of tracked inputs.

A filter that tracks signals from multiple inputs needs to take into account
as much information as possible about each and every input. Given the
many characteristics describing each input, the number of different MIMO
filters that would be needed to adress every possible combination would be
extremely large, making the use of a lookup table infeasible. Moreover,
because of differences in coherence time, UEs should probably use filters
of varying temporal extensions; a stationary UE should look far back in
time when inferring the channel since it is nearly static, whereas the channel
measured by a fast-moving UE will quickly get outdated, meaning that a
short filter will suffice.

Thus there is the need for an algorithm that can be fed with all the
information describing such things as channel fading characteristics and pilot
arrangements, and from this produce a filter of appropriate length suited for
channel estimation and prediction for the multiple inputs.

This is precisely what the Kalman filter (KF) recursions can do. Not only
does the KF constitute the optimal channel estimator/predictor given input
characteristics, but it does so also during the “transient” phase when these
characteristics change.

In this chapter we present in detail how to model a multi-input OFDM
system and how to use the model in a KF. The purpose is twofold. First, we
want to examine the prospects of using the KF as an actual channel estima-
tion/prediction implementation. For this purpose, we analyze the numerical
complexity of the KF towards the end of the chapter. We will also study
an alternative KF formulation that generally has a lower complexity than
the standard KF formulation. We find however that this variant of the KF
does not necessarily decrease numerical complexity in the present context.
Second, we want to use the KF as an instrument for analyzing a system’s
limits of performance.

Along with the optimal channel estimate/prediction, the KF also pro-
duces a measure of uncertainty about the estimate. This measure of un-
certainty bears a direct correspondence to system performance. Also, the
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Figure 4.1: Schematic illustration of a multiuser MIMO system.

uncertainty measure is in fact data-independent and is therefore a function
of the system parameters only. This means that conclusions about system
performance (or rather upper bounds on system performance) can be drawn
directly from the system model, without the need for conducting simula-
tions. By setting up a state space system representation from the UEs char-
acteristics and then studying the KF, quantitative conclusions about system
performance can be drawn.

We consider a Multiple-Input Multiple-Output Orthogonal Frequency Di-
vision Multiplexing (MIMO-OFDM) system. OFDM alleviates the problem
of multipath propagation by dividing the system bandwidth into many nar-
rowband flat fading subchannels. Relatively easily extendable to MIMO sys-
tems, MIMO-OFDM has therefore become a popular choice of transmission
technique in modern wireless multiuser systems where multipath propagation
is a major issue.

The present chapter shows, step-by-step, how to construct a state space
representation of time-varying MIMO-OFDM channels. Such a representa-
tion can be used to represent fading channels for point-to-point transmission
when the transmitter and/or the receiver are(is) equipped with array anten-
nas. It can also be used in situations where multiple UEs are communicating
with a BS over the same radio resource, so that the inputs are distributed
among a set of different UEs. Also, the framework presented in this chapter
can be used to model fading channels in a Coordinated MultiPoint (CoMP)
setting, where a single UE is receiving signals from multiple BSs.

4.2 System model

The baseband multiuser MIMO-OFDM model for nu users is shown in Figure
4.1. In this context, “nu users” refers to either nu UEs communicating with
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one BS in a multiuser scenario, or to nu BSs communicating with one UE
in a CoMP scenario. Data streams from each user are mapped onto symbols
from a finite symbol alphabet using conventional techniques (encoding, bit-
interleaving, space-time block coding, etc.) and serial-to-parallel converted
to vectors of length N . Since each transmitter may be equipped with more
than one transmit antenna, the number u of received data streams is gener-
ally larger than nu. Each N -vector is processed by an IFFT to a vector of
length N and a cyclic prefix of length NCP is added. The u inputs (transmit
antennas), which may be partitioned arbitrarily among the nu users, then
transmit the sequences of length N +NCP with sample period ts after which
each receiver antenna receives a noisy and channel distorted superposition of
the u sequences. Between transmitter and receiver, we assume a timing syn-
chronization well within the duration of a cyclic prefix, as well as a frequency
synchronization error that is much smaller than the maximum Doppler fre-
quency. The receiver antennas are in many cases separated such that all
channels fade independently. In a channel estimation/prediction context we
may then look at only one single receiver antenna without loss of generality or
attainable performance. When discussing modelling, the number of receiver
antennas are therefore irrelevant and we are in effect studying a multi-input
single-output (MISO) system. Note however that the complexity of the re-
ceiver scales linearly with the number of receiver antennas, since each of them
needs a channel estimator/predictor.

After removing the cyclic prefix, we saw in equation (2.4.5) in Chapter 2
that we can write the received sequence yf in the frequency domain as

yf = diag(sf)hf + vf , (4.2.1)

where we have excluded time indices for brevity and the subscript (·)f in-
dicates that we are here considering the full system bandwidth, in total N
subchannels. The complex-valued column vector hf represents the channel
frequency response, and the noise1 vf is assumed to be white, with covariance
matrix σ2

vIN . The column vector sf holds the transmitted symbols. When
receiving signals from u simultaneous inputs, we hence have the received
multiple-input (MI) signal

yf,MI =

u∑
i=1

diag(si
f)h

i
f + vf

= Φfhf,MI + vf .

(4.2.2)

1The noise term represents both thermal noise and interference from other transmitters.
The latter is appropriately modelled as white noise since the transmitted symbols are
unknown.
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The column vectors hi
f and si

f are the frequency response and transmitted
symbols for input i, respectively. The matrix Φf is composed of the horizon-
tally stacked matrices diag(si

f)
u
i=1,

Φf =

⎛
⎜⎝

. . .
. . .

. . .

s1
f s2

f · · · su
f

. . .
. . .

. . .

⎞
⎟⎠ , (4.2.3)

and the column vector hf,MI = [(h1
f )

T . . . (hu
f)

T ]T .
The received signal for the full bandwidth (4.2.2) has high dimensional-

ity and is computationally demanding to work with. We will therefore be
interested in considering only a small subset of w subchannels from yf,MI

at a time. Denoting the set of indices for this subset W = {s0, . . . , sw−1},
we introduce a w-by-N “extraction” matrix E, constructed so that a multi-
plication by E extracts the appropriate w elements from an N -vector. The
extraction matrix contains w ones,

E[i, si] = 1, 0 ≤ i < w, (4.2.4)

and otherwise zeros. For example, if N = 16 (here we use a very small value
for N for illustration), w = 4, and W = {8, 10, 12, 14}, then

E =

⎛
⎜⎜⎝

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎠ . (4.2.5)

The operation E diag(a)E∗, where a is an N -vector, produces a w-by-w di-
agonal matrix with elements taken from a, corresponding to the indices in
W . It also holds that E∗E is a N -by-N diagonal matrix with ones at the
si:th diagonal entries, 0 ≤ i < w, and otherwise zeros. A multiplication
from the right with E∗E nulls out columns, so that AE∗E is all zeros, ex-
cept for columns s0, . . . , sw−1 which are equal to those of A. Since a matrix
E diag(a) has non-zero columns only for columns with indices in W , it holds
that E diag(a) = E diag(a)E∗E. To obtain a measurement signal y compris-
ing only w subchannels, we multiply (4.2.2) by E:

y = Eyf,MI =
u∑

i=1

E diag(si
f)h

i
f + Evf

=

u∑
i=1

E diag(si
f)E

∗Ehi
f + v

=

u∑
i=1

diag(si)hi + v

= Φh + v,

(4.2.6)
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where y, si, hi, and v are all column vectors of length w and given by
y = Eyf,MI , si = Esi

f , hi = Ehi
f , and v = Evf . The matrix Φ, which is

called to pilot matrix, is constructed as in (4.2.3), but with the vectors {si
f}

exchanged for {si}, and the column vector h = [(h1)T . . . (hu)T ]T .

We will assume that the w subchannels hold known training symbols (pi-
lots) so that Φ is known. Alternatively, decoded payload information may be
used to construct Φ using iterative channel estimation (ICE), see Appendix
4.D. Hence we assume the use of pilot symbol assisted modulation (PSAM).
In PSAM, known reference symbols (pilots) are intermixed with payload sym-
bols. The pilots are typically laid out according to a uniform time-frequency
grid and the channel estimation/prediction filter that is to be constructed
operates on – observes – this grid only. The channel estimates obtained
from these sub-locations are subsequently interpolated/extrapolated to the
sub-locations of all payload sub-symbols.

Note that, analogous to (2.4.5), we can write

hi = N1/2EFgi = N1/2Fwgi, (4.2.7)

where gi is the baseband channel impulse response for input i, zero-padded to
length N , and the partial Fourier matrix Fw = EF constitutes w rows from
F and is explicitly defined below in (4.2.23). From (4.2.6), it then follows
that

y =

u∑
i=1

diag(si)N1/2Fwgi + v. (4.2.8)

Whether we will use (4.2.6) with frequency-domain channels {hi}, or (4.2.8)
with time-domain channels {gi}, will depend on the situation. In case the
time-domain representation (4.2.8) is used, we will attempt to model the
most significant taps in {gi}.

The system considered is a single user or multiuser OFDM system, pos-
sibly MIMO, where each receiver antenna experiences a time varying flat
fading or frequency selective channel. Each received channel is therefore
characterized by one or many time varying channel coefficients. We will here
model the channels on linear state space form. The state space model will
be constructed hierarchically, from the modelling of one single channel coef-
ficient, via the modelling of a single receiver antenna and a single user, up
to the whole multi-input system model.

We shall begin by constructing a set of matrices {F,G,Jt,Q,R, Π0} that
characterises the state space. This model may then be used to construct an
optimal observer of the channel coefficients, or we may draw inferences about
different aspects of the system directly from the model.
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4.2.1 Autoregressive modelling

We begin by considering a single channel coefficient, by which we mean either
a tap in an impulse response or the complex-valued scalar channel for a single
subchannel. The behaviour of each coefficient is determined by the local
scattering environment and the velocity of the UE. The channel is sampled
with a sampling rate determined by the period between two consecutive
pilot-bearing OFDM symbols, which we denote tp.

As described in Section 2.3, a mobile UE will experience fading of the
received signal. The spaced time correlation function of a channel (denoted
Ac(Δt) in Chapter 2) describes the correlation properties of this fading. Al-
though the fading in itself may be rapid, the spaced time correlation function
will generally change only slowly with time. For any short period of time,
a static ARMA model for the fading channel coefficient can be constructed
to well represent the correct fading behaviour [4]. For complexity reasons
it is important to keep the model order low. Since fading channel coeffi-
cients commonly exhibit oscillatory behaviour, autoregressive (AR) models
are suitable. A fading tap ht in the impulse response gt is modelled by

ht + a1ht−1 + . . . + akht−k = ut, (4.2.9)

where k is the model order and ut is the process noise that excites the process.
The AR parameters {ai}k

i=1 should be appropriately adjusted according to the
local environment. As briefly discussed in Chapter 1, the AR parameters can
either be estimated based on blocks of measurements, or continuously tracked
with e.g. the LMS method or the RLS method. The noisy measurements
on which the AR parameter estimation is based is here considered to be
prior information. In Chapter 8, we will consider various aspects of AR
parameter estimation on real channel measurements. Among these aspects
is the duration over which a channel may be considered to be static, which
we in the investigated case find to be at least 0.5 seconds.

If no measurements are available, the AR parameters may be assigned
based on less informative prior information. Below, we discuss two types
of AR models that are based on different kinds of prior information. These
models will be used in subsequent chapters.

The first type of AR model discussed here is Jakes’ model [52],[37], which
is motivated by the prior information that equally distant and evenly dis-
tributed scatterers surround the moving UE. Jakes’ model attributes the
autocorrelation function

rt(τ) � E{hth
∗
t+τ} = J0(ΩDτ) (4.2.10)

to a fading tap ht in gt. The symbol (·)∗ denotes complex conjugation.
Here, J0 is the zeroth order Bessel function of the first kind, ΩD = 2πfDtp
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is the normalised maximum angular Doppler frequency, and τ is the time
lag expressed in samples. The Doppler frequency fD is proportional to the
UE velocity v (see Table 2.1 in Chapter 2). To the autocorrelation function
(4.2.10) corresponds the classic U-shaped Doppler spectrum illustrated in
Figure 4.2.

An AR process (4.2.9) of finite order cannot mimic the autocorrelation
(4.2.10) exactly. Instead, the AR parameters need to be fitted in some way
to the desired model. Multiplying (4.2.9) with h∗t−li

for some integer li and
taking the expected value, we get

E{hth
∗
t−li
}+ a1E{ht−1h

∗
t−li
}+ . . . + akE{ht−kh

∗
t−li
} = E{uth

∗
t−li
} = 0,
(4.2.11)

which for li = 0, . . . , k − 1 are the Yule-Walker equations [53]. By choosing
a set of integers {l0, l1, . . .} larger than the model order k, we obtain an
overdetermined set of equations [7]:

⎛
⎜⎝J0(ΩD(l0 − 1)) · · · J0(ΩD(l0 − k))

J0(ΩD(l1 − 1)) · · · J0(ΩD(l1 − k))
...

⎞
⎟⎠

⎛
⎜⎜⎜⎝

a1

a2
...

ak

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎝J0(ΩDl0)

J0(ΩDl1)
...

⎞
⎟⎠ .

(4.2.12)
The AR parameters {ai}k

i=1 can then be found from the least squares so-
lution of (4.2.12). The {li} are the time lags in the autocorrelation func-
tion (4.2.10) for which the best fit is desired. Figure 4.2 illustrates the
spectrum of an AR4 model fitted to the Jakes autocorrelation for indices
{li} = {1, 51, 101, 151, . . . , 451}.

Equation (4.2.9) can be written on operator form as

ht =
1

1 + a1q−1 + . . . + akq−k
ut (4.2.13)

or by means of the z-transform as

h(z) =
zk

zk + a1zk−1 + . . . + ak

u(z) =
zk

(z − p1)(z − p2) . . . (z − pk)
u(z),

(4.2.14)
where q−1 is the backward unit delay operator. Once the parameters {ai}
have been found, the corresponding poles {pi} can be found from (4.2.14).

It should be noted that the matrix in (4.2.12) is in general poorly con-
ditioned which may cause the least squares solution to yield unstable poles.
Such poles should be reflected in the unit circle, so that a stable model is
constructed while preserving the spectral density.

The second type of AR model is a model that is based on less informa-
tive prior information than Jakes’ model. Here, we are ignorant to what the
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Figure 4.2: Doppler spectra for three different models with normalized Doppler
frequency ΩD = 0.1. The solid line is the standard Jakes model. The dashed line
is an AR4 process which has been fitted to ten elements with spacing 50 in the
Jakes autocorrelation function. The dotted line is an AR4 model derived from a
Butterworth filter, yielding a flat Doppler spectrum.

Doppler frequency of the received channel coefficient is, except that it is upper
bounded by the maximum Doppler frequency fD. Based on this ignorance,
we should then assign a Doppler spectrum that attributes the same proba-
bility density to any Doppler frequency in the range [−fD, fD]. AR models
with flat Doppler spectra can be constructed from continuous-time Butter-
worth filters. These have poles evenly distributed over a half-circle with the
“prewarped” radius 2 tan(ΩD/2)/tp in the negative half of the complex plane.
Each continuous-time pole ps can then be translated to a discrete-time pole
pz e.g. through the bilinear transform pz = (2/tp + ps)/(2/tp − ps). The flat
Doppler spectrum of a 4th order AR process is shown in Figure 4.2.

Of the two types of AR models presented above, the Jakes type model
will yield the best estimation and prediction performance, since its Doppler
spectrum features strong spectral components that makes it easy to extra-
polate the channel into the future. Even better performance will follow from
a Doppler spectrum with a single strong component, which will sometimes be
the case with on-line AR parameter estimation on real channel measurements.

4.2.2 State space modelling

Once the poles of the AR process have been found, we seek to construct a
state space model

x
(c)
t+1 = Xx

(c)
t + Yu

(c)
t ,

h
(c)
t = Zx

(c)
t ,

(4.2.15)
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where h
(c)
t is the fading channel coefficient (either in the frequency domain

or in the time domain), x
(c)
t is the state vector of length k, where k is the

model order, and {u(c)
t } is the process noise2 that “drives” the process. The

superscript (·)(c) indicates that we at this point consider modelling of indi-

vidual channel coefficients. The variance of u
(c)
t , which ultimately dictates

the variance of the coefficient h
(c)
t is uninteresting at this moment – the focus

here is on the time dynamics of h
(c)
t .

The matrices {X,Y,Z} may generally be time-varying, but throughout
this chapter we shall assume that they are varying slowly enough that they
may be considered static. In Chapter 8, we will show that channel models
may typically be held static for at least half a second at a time.

As shall be evident later, it is favourable to choose a state space model on
diagonal form, so that X is diagonal. This can be accomplished by putting
the AR poles on the diagonal of X. The elements of X ∈ Ck×k, Y ∈ Ck×1,
and Z ∈ C1×k are set as follows [43]:

X[i, i] = pi,

Y[i] =
∏

j=1,...,k
j �=i

(pi − pj)
−1,

Z[i] = pk−1
i , i = 1, . . . , k.

(4.2.16)

The matrices Y and Z may be rescaled by an arbitrary factor without chang-
ing the fading characteristics of the coefficient h

(c)
t . While generally X and Z

both have a reasonable scaling, the elements of Y are often extremely large,
the reason being that poles a frequently located close to the unit circle. It
may therefore be a good idea to normalise Y, e.g. by the magnitude of its
largest element.

Note that, to be consistent with notation used in later models, we use
matrix notation for Y and Z, although they are vectors in the model (4.2.15).

2The process noise {u(c)
t } is the same as the process {ut} in (4.2.9) except for a time

shift. This time shift does not matter however since the process is white.
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Example 4.2.1 Channel coefficient model

Assume that we want to model a fading channel coefficient (i.e. a tap in
an impulse response or the complex-valued scalar channel for a single sub-
channel) experienced by a terminal moving at a speed of 72 km/h. The
coefficient is the sum of a large number of reflections coming from scatter-
ers evenly distributed around the terminal, all at approximately the same
distance. The carrier frequency is fc=3 GHz and the sampling period (the
period between pilot-bearing OFDM symbols) is tp = 200μs. The model
order is set to k = 2.

The Doppler frequency is here fD = fcv/c0=200 Hz, and the normalized
angular Doppler frequency is ΩD = 2πfDtp = 0.2513. The geometry of
the problem motivates a Jakes Doppler spectrum. In the approximating
second order AR model, we choose the poles p1 = 0.95 exp(jΩD) and p2 =
0.95 exp(−jΩD), which gives strong emphasis to the maximum Doppler
frequency fD (and its negative counterpart), as does Jakes’ model. The
radius 0.95 was chosen arbitrarily but should be close to unity.

According to (4.2.16), we set

X =

(
p1 0
0 p2

)
=

(
0.9202 + 0.2363j 0

0 0.9202− 0.2363j

)
, (4.2.17)

Y =

(
(p1 − p2)

−1

(p2 − p1)
−1

)
=

(
−2.1164j
2.1164j

)
, (4.2.18)

and

Z =
(
p1 p2

)
=

(
0.9202 + 0.2363j 0.9202− 0.2363j

)
. (4.2.19)

(Note that while Y in many cases may have very large elements, requiring

a normalization, this is not the case here.) A realization of {h(c)
t } from

the state space model x
(c)
t+1 = Xx

(c)
t + Yu

(c)
t , h

(c)
t = Zx

(c)
t is displayed in

Figure 4.3. The complex white noise u
(c)
t was given unit variance. As can

be seen from Figure 4.3, the wavelength is about 0.1 m, as should be since
the carrier frequency is 3 GHz. We also plot the power spectrum, which
exhibit strong peaks at ±fD, just like the Jakes spectrum. Note that the
general amplitude of h

(c)
t is high, since the poles are located near the unit

circle. However, scaling is not an issue at this point.



72 4.2. System model

0.0 0.2 0.4 0.6 0.8

�10

�5

0

5

10

Distance�m�

A
m

pl
itu

de

(a) Time series

�400 �200 0 200 400
0

2000

4000

6000

8000

10 000

Doppler frequency�Hz�

Po
w

er
sp

ec
tra

ld
en

si
ty

(b) Power spectrum

Figure 4.3: Realization of the one-coefficient state space model.

4.2.3 Multipath channel model

To model the signal coming from one input, we need to model each fad-
ing channel coefficient in that signal. We will consider tracking w parallel
subchannels, over which pilots are transmitted. The ability to track these
subchannels will depend on how correlated they are, which in turn depends
on spacing in frequency and also on the frequency properties – mainly the
coherence bandwidth – of the channel. The parameter w, which henceforth
shall be called the filter width, is a design parameter with which the system
designer can trade off channel estimation performance for complexity. In
Chapters 5 and 6 we shall study how different settings of w affect channel
estimation and prediction performance.

Two different modelling approaches

There are two approaches to modelling the fading channel coefficients. Ei-
ther we use impulse response modelling and model and track the significant
taps in the impulse response, or we use subchannel modelling and model and
track the w parallel subchannels. Which scheme to choose depends on a
number of factors. In a real system, it is generally easier to use subchannel
modelling since that model can be obtained relatively easily from channel
measurements. Using impulse response modelling in a real system, on the
other hand, requires estimating the number, gains, and delays of the signifi-
cant taps in the impulse response, which typically requires the use of subspace
methods for system identification of linear dynamic systems.

Let us denote the number of significant taps in the impulse response by
m. When setting up a model with the purpose of using it for analyzing a
system’s performance, the issue of deciding which modelling method to use
is largely determined by which of the numbers m and w is smallest. As a
rule of thumb, if m < w we would use impulse response modelling. If the
converse is true we would use subchannel modelling. The numerical results
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will be exactly the same, but there are significant computational benefits
to be made by making the appropriate choice. We will in the following use
the integer parameter x to denote either m or w, depending on the method
chosen. Correspondingly, we use the notion channel coefficient to denote a
subchannel or a significant tap in an impulse response, whichever applies.

If impulse response modelling is to be used, we need to assume some
knowledge about the power delay profile of the channel. This knowledge
consists of the delays and the powers of the m distinct taps. It is represented
as two matrices Rγ and D. The first, Rγ, is a diagonal m×m matrix with
each diagonal entry representing the power (variance) of a tap. For example,
assuming that the impulse response has three significant and mutually inde-
pendent taps with the respective variances 6 dB, 6 dB, and 3 dB, so that the
total power is 10 dB, we would set Rγ = diag(4, 4, 2).

The matrix D has dimensions N ×m, where N is the number of samples
in an OFDM symbol, defined so that

g
(m)
t = Dh

(m)
time,t, (4.2.20)

where h
(m)
time,t holds the most significant taps in the sampled impulse response

g
(m)
t . The superscript (·)(m) indicates that we now consider multipath mod-

elling. The elements of D are given by

D[i, j] = f(its − τj), (4.2.21)

where f(t) is the compound of the transmitter and the receiver pulse shapes,

ts is the system sampling period, and τj is the delay of the j:th tap in h
(m)
time,t.

Assuming that f(t) is a raised cosine pulse and that all {τj} are integer
multiples of ts, D is a sparse matrix containing exactly m ones and zeros
otherwise. For further details on discrete-time channel modelling, see e.g.
[54].

A block-diagonal state-space model

The x channel coefficients (in the time or frequency domain) are modelled
by setting up a block-diagonal state space model3

x
(m)
t+1 = diag(X, . . . ,X)x

(m)
t + diag(Y, . . . ,Y)u

(m)
t

= Ax
(m)
t + Bu

(m)
t ,

h
(m)
t = T × diag(Z, . . . ,Z)x

(m)
t = T Cx

(m)
t .

(4.2.22)

Although the state space model (4.2.22) allows different models to be used
for the respective channel coefficients, we will throughout this thesis assume

3For a specification of the involved matrix dimensions, see Appendix 4.H.
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that the same model is employed for all channel coefficients. Since x channel
coefficients are modelled simultaneously, the state vector x

(m)
t has length4 kx.

A ∈ Ckx×kx is diagonal and B ∈ Ckx×x and C ∈ Cx×kx are block diagonal
matrices with x blocks each. Note that the vector Cxt are the x fading co-
efficients. However, since we are interested in modelling the w subchannels,
regardless of whether we use impulse response modelling or subchannel mod-
elling, we introduced a matrix T with the purpose of transforming Cx(m) to
the frequency domain, if necessary.

When subchannel modelling is used, no such transform is needed and
we set T = Iw. When impulse response modelling is employed so that
Cx

(m)
t = h

(m)
time,t, we set T = N1/2FwD, where Fw is the partial Fourier

matrix with elements

Fw[i, j] = N−1/2e−2πjsij/N , i = 0, . . . , w − 1, j = 0, . . . , N − 1, (4.2.23)

where si is the index for subchannel i. Then, h(m) = N1/2Fwg(m), in accor-
dance with (4.2.7).

For an appropriate scaling of h
(m)
t we need to determine the x-by-x process

noise covariance matrix ‖u(m)
t ‖2 � L. Let

h′t = Cx
(m)
t , (4.2.24)

so that either h′t = h
(m)
t or h′t = h

(m)
time,t, depending on the type of mod-

elling. We first need to establishing the channel coefficient covariance matrix
Rh′ � ‖h′t‖2. For impulse response modelling this is simply Rh′ = Rγ. For
subchannel modelling, Rh′ can often be estimated directly from noisy mea-
surements of the time-frequency channel, which means that we do not have
any need for the matrices Rγ and D. Alternatively, Rh′ can be derived from
the time domain information through Rh′ = NFwDRγD

∗F∗w.
It is generally non-trivial to calculate the process noise covariance matrix

L from the channel coefficient covariance matrix Rh′. Fortunately, the special
state space structure used here permits us to set L explicitly by using the
following theorem.

Theorem 4.2.1 (Scaling of covariance matrices). Consider a state space
model {

xt+1 = Axt + But,

h′t = Cxt, t ≥ 0,
(4.2.25)

4The model order may differ between coefficients, so that the length of x(m) is actually∑x

i=1 ki, where ki is the model order of channel coefficient i. For brevity we shall however
denote the length of x(m) as kx. This notational convention is later extended to the system
model, when several users are considered.
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with multivariate circular symmetric complex Gaussian variables {u,x0} such
that

〈[uT xT
0 ]T , [uT xT

0 1]T 〉 =

(
L 0 0
0 Γ0 0

)
(4.2.26)

and matrices {A,B,C} such that

A = diag(a),

B = diag(Y1, . . . ,Yx),

C = diag(Z1, . . . ,Zx),

(4.2.27)

where, for some positive integers {k1, . . . , kx}, a is a vector of length
∑x

i=1 ki

whose complex elements have magnitudes strictly less than one, and where
the {Yi} are column vectors of the respective lengths {ki} and the {Zi} are
row vectors of the same respective lengths {ki}. If, for a positive definite
matrix Rh′, we set

L = Rh′ � C(B1B∗ � (1− aa∗))C∗, (4.2.28)

where 1 indicates a matrix of appropriate dimensions containing only ones,
and the symbol � indicates element-wise division, and we also set

Γ0 = BLB∗ � (1− aa∗), (4.2.29)

then the model will be stationary, so that the state covariance ‖xt‖2 = Γt has
a constant value Γ̄ obeying

Γ̄ = AΓ̄A∗ + BLB∗, (4.2.30)

and the covariance matrix for the channel coefficients will be constant with
value Rh′:

‖h′t‖2 = Rh′. (4.2.31)

Proof. Since A = diag(a), it holds that AΓ̄A∗ = aa∗ � Γ̄ (for any matrix
Γ̄), where � is element-wise multiplication. The solution Γ̄ to the Lyapunov
equation (4.2.30) is therefore given by

(1− aa∗)� Γ̄ = BLB∗ ⇒ Γ̄ = BLB∗ � (1− aa∗). (4.2.32)

Since Γt = Γ̄ for all t, with Γ0 = Γ̄ as a special case, the result (4.2.29)
follows.

To derive the result (4.2.28) we partition Γ̄ into blocks Γ̄i,j so that each
Γ̄i,j is a ki× kj block, where 1 ≤ i, j ≤ x. We also partition the vector a into
sub-vectors {ai} so that ai is a ki-vector. From (4.2.30), it then holds that

Γ̄i,j = aia
∗
j � Γ̄i,j + L[i, j]YiY

∗
j

⇒ Γ̄i,j = L[i, j]YiY
∗
j � (1− aia

∗
j).

(4.2.33)
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From (4.2.25), it follows that Rh′ = CΓ̄C∗. We then find the elements of L
from

Rh′[i, j] = Zi(L[i, j]YiY
∗
j � (1− aia

∗
j ))Z

∗
j

⇒ L[i, j] = Rh′[i, j]/(Zi(YiY
∗
j � (1− aia

∗
j ))Z

∗
j),

(4.2.34)

from which the result (4.2.28) follows.

In accordance with Theorem 4.2.1, we set

L = Rh′ � C(B1B∗ � (1− aa∗))C∗, (4.2.35)

where a are the diagonal elements of A. To force model stationarity, we also
set

Γ0 � ‖x(m)
0 ‖2 = BLB∗ � (1− aa∗). (4.2.36)

The single-input channel model {A,B, TC,L, Γ0} now models the kx fading
channel coefficients by means of the state space model (4.2.22), with a white

noise vector u
(m)
t of dimension x as input.

Example 4.2.2 Multipath channel model – modelling in the impulse
response domain

A frequency selective channel is in this example well described by a two-tap
model, i.e. m = 2. Both taps have the same fading behaviour as described
in Example 4.2.1. The second tap has one third of the power of the first tap,
and the delay between the two is τ1 − τ0=1 μs. We may assume that the
first tap has delay τ0 = 0. The SNR is 10 dB. The system uses square-root
raised cosine pulses with roll-off factor 0 at both transmitter and receiver,
so that the compound pulse shape is a Nyquist pulse [55]. We wish to
model two parallel subchannels, which have separation Δf = 80 kHz, by
modelling in the impulse response domain.

First we set A = diag(X,X), B = diag(Y,Y), and C = diag(Z,Z),
with {X,Y,Z} set according to Example 4.2.1.

Then we need to establish the transformation matrix T = N1/2FwD.
Since the pulses are Nyquist pulses and the Fourier transform of a Nyquist
pulse is a complex sinusoid of finite duration, we have that T [i, j] = ejωiτj ,
where ω1 − ω0 = 2πΔf and we may assume that ω0 = 0. This means that

T =

(
1 1
1 ejω1τ1

)
≈

(
1 1
1 ej/2

)
. (4.2.37)

Finally, we need to determine the process noise covariance matrix L.
Since the two taps are modelled in the impulse response domain and the
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total SNR is 10, we have Rγ = diag(7.5, 2.5) (assuming that the measure-
ment noise has unit power). From (4.2.28), we then find

L = Rh′ � C(B1B∗ � (1− aa∗))C∗ =

(
0.08947 0

0 0.02982

)
, (4.2.38)

using Rh′ = Rγ and a holding the diagonal elements of A. To make
the model stationary, we can also set the prior state covariance matrix
according to (4.2.29).

Making a realization from the model x
(m)
t+1 = Ax

(m)
t + Bu

(m)
t , h

(m)
t =

T Cx
(m)
t , with ‖u(m)

t ‖2 = L, it is found that the sample variance of each of
the two subchannels in h(m) is close to 10, as we expect. The covariance
between the two should be 7.5 + 2.5e±jω1τ1 , as can be seen by studying the
off-diagonal elements in the subchannel covariance matrix T RγT ∗. A nu-
merical investigation gives the sample covariance 9.6462± 1.1960j between
the two subchannels, in close agreement with the theory.

Example 4.2.3 Multipath channel model – modelling in the sub-
channel domain

The SNR in an OFDM system is assumed be 10 dB, and the fading environ-
ment is assumed to be well described by Example 4.2.1. We want to model
two subchannels (w = 2) in this system by modelling in the subchannel
domain. By empirical study, we find the sample covariance between the
two subchannels to be approximately 7.5 + 2.5e±j/2.

Assuming that the measurement noise has unit variance, we have the
subchannel covariance matrix

Rh =

(
10 7.5 + 2.5e−j/2

7.5 + 2.5ej/2 10

)
, (4.2.39)

and since we here model in the subchannel domain, we have from (4.2.24)
that Rh′ = Rh. Coincidentally, the covariance matrix for the subchannels
Rh′ used here is the same as the corresponding matrix T RγT ∗ in Example
4.2.2. Since we use subchannel domain modelling, the transformation ma-
trix is now T = I2. The process noise covariance L is calculated according
to (4.2.28), and we find

L =

(
0.1193 0.1156− 0.0143j

0.1156 + 0.0143j 0.1193

)
. (4.2.40)
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Making a realization as in Example 4.2.2, we find the sample variance of
both the subchannels to be close to 10, and their sample covariance is
9.6714± 1.2070j, again in close agreement with theory.

4.2.4 Multi-input channel model

The continuation from a single input model to a multi-input model is a simple
matter of augmenting the state space with a third hierarchical block level5:

xt+1 = diag(A1, . . . ,Au)xt + diag(B1, . . . ,Bu)ut,

� Fxt + Gut

ht = diag(T1C1, . . . , TuCu)xt � Hxt.

(4.2.41)

Assuming independence between the u transmitting antennas, the process
noise covariance matrix Q � ‖ut‖2 and the prior Π0 � ‖x0‖2 can be con-
structed accordingly:

Q = diag(L1, . . . ,Lu),

Π0 = diag(Γ1, . . . , Γu).
(4.2.42)

The subscripts indicate model matrices for u individual inputs.
Although in most cases the transformation matrices {Ti}u

i=1 would be the
same for all inputs, the state space model is general enough to handle different
transformation matrices, so that impulse response modelling may be used
for some inputs and subchannel modelling for others. The model could also
accommodate different numbers of subchannels for different inputs, but we
are here interested in modelling u inputs over the same w subchannels. Note
that although the model matrices are large (F ∈ Ckxu×kxu,G ∈ Ckxu×xu,H ∈
Cwu×kxu), they are sparse and therefore require a limited amount of memory
for storage.

Finally we model the measurements, in which the fading channel coeffi-
cients are observed in additive white noise through pilot symbols:

yt = Φtht + vt = Jtxt + vt. (4.2.43)

Here, Jt = ΦtH ∈ Cw×kxu, where Φt ∈ Cw×wu, introduced in (4.2.3), holds
potentially time-varying pilot symbols, and vt is white Gaussian noise with
covariance matrix R � ‖vt‖2. By conventionally setting R = Iw, we can in-
terpret Tr(Rγ) for an input as that input’s signal-to-noise (and interference)
ratio, where Tr(·) is the matrix trace.

5For a specification of the involved matrix dimensions, see Appendix 4.H.
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In a single input6 system, Φt is conveniently chosen as a diagonal matrix

Φt =

⎛
⎜⎝φ1,1,t

. . .

φw,1,t

⎞
⎟⎠ (4.2.44)

where the pilot symbols φi,j,t for subchannel i and input j at time t are
generally complex-valued. In a multi-input system, Φt could either be set up
to assign exclusive pilots to all the inputs (which is often intractable since
it generates an excessive pilot overhead), or to assign pilots to many inputs
simultaneously and at the same subchannels, in which case the pilots will
overlap. We return to this matter in Chapter 6.

We now have a model

xt+1 = Fxt + Gut,

yt = Jtxt + vt,
(4.2.45)

where ut, vt, and x0 are zero-mean Gaussian, white, and

‖[uT
t ,vT

t ,xT
0 ]T‖2 = diag(Q,R, Π0), (4.2.46)

where Q > 0, R > 0, and Π0 > 0, that accurately models all the kxu
channel coefficients in the system. Appendix 4.H summarizes the dimensions
and structures of all matrices that the model (4.2.45) depends on.

Example 4.2.4 MIMO channel model

A terminal receives two inputs, both with fading channels according to
Example 4.2.1. The inputs are both received on two subchannels. These
subchannels have correlation properties as described by Examples 4.2.2 and
4.2.3 (the two examples are identical in this respect). The measured pilot
symbols from the two inputs overlap in time and frequency, but we may
choose the values of the transmitted pilot symbols. We here wish to model
the received noisy signal as measured by the terminal.

For this purpose, we compute {A,B, TC,L, Γ0} as in Example 4.2.2 or
4.2.3 and set the model matrices

F = diag(A,A), G = diag(B,B), H = diag(T C, T C),

Q = diag(L,L), R = I2,

6Note that the notion input refers to a data stream from one transmitting antenna
element, received over w subchannels, and that the inputs are here represented by the
matrix Φt. This should be distinguished from the elements in the process noise ut, which
are sometimes referred to as inputs in state-space contexts.
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We also set the prior state covariance matrix Π0 = diag(Γ0, Γ0) to force
model stationarity.

The total model thus has process noise of dimension xu = 4, kxu = 8
states, xu = 4 channel coefficients, and a measurement signal of dimension
w = 2. It remains to set the pilot symbol matrix Φt, which may be time
varying. The pilot patterns used by the two inputs should be mutually
orthogonal. In a flat fading environment, choosing orthogonal pilot patterns
is adequate to separate the channels for the two inputs completely. Here,
since the channels are frequency selective, it is a good idea to also make
the patterns orthogonal over time for each of the two subchannels. For
example, we could let Φt alternate between the two values(

1 0 1 0
0 1 0 −1

)
and

(
1 0 −1 0
0 1 0 1

)
. (4.2.47)

With this choice of Φt, the regressor matrix Jt = ΦtH has period 2. In
Chapter 6, we will see how time-varying pilots can greatly improve channel
estimation and prediction performance when u > w.

4.2.5 A few remarks

Although the model (4.2.45) is quite general, we have made a few restricting
assumptions that one may want to relax.

Rice components

We have throughout this chapter modelled the fading channel as a channel
having zero-mean. The channel impulse response may however have a static
non-zero component, especially in line-of-sight (LOS) scenarios when a phase
locked loop locks to the LOS component. The static component, say g(av.),
may then be estimated and the corresponding frequency response average
h(av.) = N1/2Fwg(av.) calculated. The total channel is then h

(tot.)
t = h(av.)+ht,

and we model and track the zero-mean component ht.

Antenna coupling

In an nR×nT MIMO system, we assumed in the beginning of Section 4.2 that
the nR receiving antennas are uncorrelated. Furthermore, in Section 4.2.4,
we also assumed that the nT transmitting antennas are uncorrelated. How-
ever, due to insufficient antenna separation, electrical coupling, and/or local
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geometry, antenna correlations may be present at both the transmitting and
the receiving sides of the system.

Theorem 4.2.1, which we used to set the process noise covariance matrix
so as to produce a correct correlation among the modelled channel coeffi-
cients, can be trivially extended to handle correlations among antennas. The
theorem was applied at the multipath modelling level (Section 4.2.3), but
can easily be “moved up” to the multi-input modelling level (Section 4.2.4).
Replace the system model (4.2.25) in the theorem with xt+1 = Fxt + Gut,
h′ = diag(C1, . . . ,Cu)xt and assume that the nRnT -by-nRnT channel coeffi-
cient correlation matrix Rh′ = ‖h′t‖2 has been estimated. Solve for Q = ‖ut‖2

instead of L and Π0 = ‖x0‖2 instead of Γ0. The matrix structures comply
with the theorem also for this larger state space model.

4.3 Channel inference

4.3.1 The Kalman filter recursions

From the total multi-input system model (4.2.41)–(4.2.43), characterized by
matrices {F,G,Jt,Q,R, Π0}, we may now infer the unknown fading channel
coefficients by way of the Kalman filter (KF) recursions. See Table 4.1.

In Table 4.1, Re,t is the covariance matrix for the innovations, and Kf,t is
the Kalman filter gain which expresses the tradeoff between taking new mea-
surements into account and relying on old knowledge. The matrix Wt = JtPt

is introduced as an intermediate result to make the computations efficient.
The KF does not only calculate point estimates of the state vector xt.

Rather, it produces the full pdf

p(xt|y0, . . . ,yt, I) = CN (xt; x̂t|t,Pt|t) (4.3.9)

for the state vector, given as recent measurement as possible. The mean
value of this pdf, x̂t|t, is called the filtered estimate of xt and is the optimal
estimate given measurements up to time t. As a by-product, the KF also
produces the one-step prediction pdf

p(xt|y0, . . . ,yt−1, I) = CN (xt; x̂t,Pt), (4.3.10)

which gives the optimal estimate given measurements up to time t. Note
that we use, for brevity, the short notation

x̂t � x̂t|t−1 and Pt � Pt|t−1. (4.3.11)

The covariance matrix for the state vector xt given measurements up
to and including yt, and the covariance matrix for the state vector xt given
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Table 4.1: The Kalman recursions with numerical complexity for impulse response
modelling (imp. mod. cplx.) and subchannel (subc. mod. cplx.) modelling, re-
spectively, in number of arithmetic complex operations (one operation=one mul-
tiplication and one addition). The total number of states is n = kxu, where k is
the model order per channel coefficient, x is either w (filter width) or m (number
of taps in the impulse response), and u is the number of inputs.

initialize:
x̂0 = 0,P0 = Π0

iterate:

operation imp. mod. cplx. subc. mod. cplx.

Jt = ΦtH nw n (4.3.1)

Wt = JtPt n2w n2 (4.3.2)

Re,t = WtJ
∗
t + R nw2/2 nw/2 (4.3.3)

Kf,t = W∗
tR

−1
e,t nw2 + w3/6 nw2 + w3/6 (4.3.4)

x̂t|t = x̂t + Kf,t(yt − Jtx̂t) nw + nw n + nw (4.3.5)

Pt|t = Pt −Kf,tWt n2w/2 n2w/2 (4.3.6)

x̂t+1 = Fx̂t|t n n (4.3.7)

Pt+1 = FPt|tF
∗ + GQG∗ n2/2 n2/2 (4.3.8)

measurements up to and including yt+1, are denoted Pt|t and Pt, respectively.
Note that these matrices also constitute the covariance matrices for the state
estimation errors:

p(xt − x̂t|t|y0, . . . ,yt, I) = CN (xt − x̂t|t; 0,Pt|t), (4.3.12)

p(xt − x̂t|y0, . . . ,yt, I) = CN (xt − x̂t; 0,Pt). (4.3.13)

From the state estimate vector we can compute the channel coefficients
estimate by ĥt|t = Hx̂t|t, which may then be used for channel equalization
or as input to a soft channel decoder. When the KF is employed as an
analyzing tool for assessing different aspects of a system without carrying
out any simulations, the state estimation update equations (4.3.5) and (4.3.7)
should be omitted entirely.

An important property of the KF recursions is that the error covariance
matrices Pt|t and Pt depend only on the model matrices and not on the
measurements {yt}. This means that although we cannot calculate any es-
timates in the absence of measurements, we can calculate the distribution of
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estimates without measurements being present. And more importantly, we
may determine the distribution of errors, i.e. the differences between esti-
mated and true channel coefficients.

The distribution of errors for the channel coefficients in ht, given mea-
surements up to time t0, is zero mean circular symmetric complex Gaussian
with variance, or mean square error (MSE), given by the diagonal elements
of HPt|t0H

∗. As a measure of quality for channel estimations or predictions,
we will use the normalized mean square errors (NMSE):

vector of NMSE values for ht

given y0, . . . ,yt0
= diag(HPt|t0H

∗) � diag(Rh), (4.3.14)

where � means element-wise division, diag(M) is a vector holding the diag-
onal elements of the matrix M, and Rh is the subchannel covariance matrix.

In the above, we have used the general notation Pt|t0 in place of Pt|t to
emphasize that (4.3.14) holds whatever the amount of measurement available,
since the KF recursions can be extended to calculate any error covariance
‖xt− x̂t|t0‖2 � Pt|t0 . If t > t0 we have a prediction problem. Prediction error
covariance matrices can be calculated iteratively through

Pt+c+1|t = FPt+c|tF
∗ + GQG∗. (4.3.15)

It is straightforward to show that if |F| < 1, then Pt+c|t → Π0 as c →
∞, so that the KF “falls back” to a state of maximum ignorance when
measurements become uninformative. When this happens, we see from the
relation Rh = HΠ0H

∗ that the NMSE is 0 dB.
When t < t0 we have a smoothing problem. Kalman smoothing is not

as straightforward as prediction and there are many variants of smoothing
formulas. In Chapter 3 we briefly presented the so-called Bryson-Frazier for-
mulas for Kalman smoothing. For a comprehensive presentation of Kalman
smoothing, see [49], [56].

4.3.2 The periodic filter

We have assumed in (4.2.41)–(4.2.42) that the model matrices {F,G,H,Q,R}
are time-invariant. The matrix F is, by construction, diagonal, with the poles
of the models for the respective channel coefficients as elements. These poles
are chosen to be stable, meaning that the eigenvalues of F are strictly inside
the unit circle. When also the pilot matrix Φt is static, the KF will set-
tle to a stationary state after a few iterations in the recursions loop, which
means that all covariance matrices in the KF recursions become constant,
see Theorem 4.G.1. It is then convenient to define the stationary covariance
matrices

Pt|t → P̄f , t →∞
Pt → P̄p, t →∞ (4.3.16)
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However, in the system model (4.2.45) we have allowed Φt to be time varying.
A special case occurs when Φt is periodic with period b. The filter will then
settle to a periodic state, see Appendix 4.G. Analogous to (4.3.16), we may
then define two sets of matrices {P̄f,0, . . . , P̄f,b−1} and {P̄p,0, . . . , P̄p,b−1},
each of size b, defined by

P̄f,j � Pib+j|ib+j and P̄p,j � Pib+j, i ≥ i0 (4.3.17)

where j ∈ [0, b), and i0 is assumed to be large enough that the filter has
reached a periodic state.

4.3.3 Modelling channel estimates

When analysing any particular communications system, we are interested in
seeing how estimation and prediction errors are distributed, i.e. we want to
calculate their frequency distribution. While a probability density distribu-
tion is not generally the same as a frequency distribution, this equality holds
when the filter is stationary or periodic [43].

Example 4.3.1 Filtered estimates model

The UE in Example 4.2.4 uses an optimal filter based on a perfect chan-
nel model to infer the fading MIMO channel. Filtered estimates are used
as channel estimates. We wish to statistically describe and produce such
filtered estimates when the filter operates in a stationary state.

Statistically correct estimates can be produced by calculating a syn-
thetic channel and then running a KF on it, but it is more straight-forward
to use a model for the estimates themselves. First, note that Jt from
Example 4.2.4 has period 2. We find the 2-periodic stabilizing solution
{P̄p,0, P̄p,1} by iterating the discrete-time Riccati difference equation

Pt+1 = FPtF
∗ + GQG∗ − FPJ∗t (JtPtJ

∗
t + R)−1JtPtF

∗ (4.3.18)

a few times. Defining R̄e,0 � J0P̄p,0J
∗
0 + R, R̄e,1 � J1P̄p,1J

∗
1 + R, and

K̄p,0 � FP̄p,0J
∗
0R̄

−1
e,0, K̄p,1 � FP̄p,1J

∗
1R̄

−1
e,1, we can set up the model for the

one-step predictions (see (3.4.42)),

x̂t+1 = Fx̂t + K̄p,tmod 2et (4.3.19)

yt = Jtx̂t + et (4.3.20)

where t mod 2 is the remainder of division of t by 2, and et is white with
time-varying covariance matrix R̄e,t. Filtered channel estimates are then
calculated from the one-step state predictions:

ĥt|t = H(x̂t + F−1K̄p,tet). (4.3.21)



Chapter 4. Modelling MIMO-OFDMA systems 85

The estimation errors for the filtered estimates are white in time with
covariance matrix HP̄f,tH

∗, where P̄f,t is given by (4.3.6):

P̄f,t = (I− P̄p,tJ
∗
t R̄

−1
e,t Jt)P̄p,t. (4.3.22)

4.3.4 Optimal channel gain prediction

Consider a single channel coefficient ht in the channel coefficient vector ht.
The squared magnitude channel coefficient, |ht|2, together with the noise
variance, determines the signal-to-noise ratio and has thus a direct bearing
on system performance. It is therefore of interest to predict the squared
magnitude of a channel coefficient rather than its complex value. From basic
statistical theory (see Appendix 4.A and 4.B) we know that if a parameter h
has pdf CN (h; ĥ, σ2), then its squared magnitude z � |h|2 has a non-central
χ2 pdf with two degrees of freedom:

p(z|ĥ, σ2) =
1

σ2
exp

(
−z + |ĥ|2

σ2

)
I0

(
2
√

z|ĥ|
σ2

)
, z ≥ 0, (4.3.23)

with mean value |ĥ|2 + σ2 and variance σ2(2|ĥ|2 + σ2). Here, I0 is the zeroth
order modified Bessel function of the first kind. The optimal point estimate7

of a coefficient’s squared magnitude |hc|2 is therefore |ĥc|2 + σ2
c as suggested

by Ekman et al in [57], and not – as one perhaps would have thought –
simply |ĥ|2, as suggested in e.g. [58]. (It should be noted that a different but
equivalent expression for the χ2-distribution (4.3.23) is used in [57] and [58].
See Appendix 4.C.)

On vector form we can therefore compactly write the channel power gain
estimates as follows:

vector of optimal squared
magnitude estimates

= diagonal elements of (ĥt|t0ĥ
∗
t|t0 + HPt|t0H

∗),

(4.3.24)
where we have assumed that measurements up to and including time t0 are
available.

7With z = |h|2, the optimal estimate ẑ of z is meant in the sense that a quadratic loss
function is used, so that the expected value of the error (z − ẑ)2 is minimized, cf. Section
3.2.4.
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4.3.5 A special case: The GCG algorithm

We will generally take the regressor matrix Jt in (4.2.45) to be periodic,
since the filter will then converge to a periodic filter. But in fact, under
special circumstances a time-invariant model yielding a stationary filter can
be constructed even when Jt is not periodic. Take the single-input case
(4.2.43) with u = 1 so that the pilot matrix Φt (4.2.44) is invertible. A
“fictitious” measurement signal

ȳt = Φ−1
t yt = Hxt + Φ−1

t vt (4.3.25)

can then be constructed from the measurement vector (4.2.43). The fictitious
noise Φ−1

t vt has covariance matrix Φ−1
t RΦ−∗t which is generally time varying.

Since Φt is selected to be diagonal when u = 1, the same covariance matrix
can be written Ψt �R, where � is the elementwise multiplication operator,
and the elements of Ψt are

Ψt[i, j] = φ−1
i,t (φ∗j,t)

−1, (4.3.26)

where φi,t is the pilot for subchannel i and time t. By letting φi,t = exp(jωt),
so that pilots have unit modulus and the same pilot symbol is used on all sub-
channels, the model becomes time static for any value of the noise covariance
matrix R. If we assume that the elements in vt are mutually uncorrelated
with variance σ2

v , we have R = σ2
vI. It then suffices to choose Φ−1

t = Φ∗t , i.e.
unit modulus pilots that are allowed to differ between subchannels, to make
the model time-invariant.

For legacy reasons, we have sometimes referred to filters using the ficti-
tious measurement signal (4.3.25) as General Constant Gain (GCG) algo-
rithms; see e.g. [59],[60].

4.4 Numerical complexity

To evaluate the feasibility of using optimal filters as proposed in this thesis,
we need to assess the complexity of the KF. The complexity is mainly deter-
mined by the number of states n, which is the product of the model order
k, the number of modelled channel coefficients x (i.e. the impulse response
length m or the filter width w), and the number of inputs u.

The KF recursions update the filtered state estimate vector x̂t|t, the state
prediction vector x̂t+L|t, the filtered state estimation error covariance matrix
Pt|t, and the state prediction error covariance matrix Pt+L|t. The numerical
complexity of a general KF is on the order of n3 [61], but due to the block
diagonal structures used for fading channel modelling in this thesis and the
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fact that F is diagonal, the complexity is reduced considerably as compared
to the general KF.

In Table 4.1, we list the complexity, counted in complex arithmetic oper-
ations, for each operation in the KF recursion loop when either subchannel
modelling or impulse response modelling is being used. One complex arith-
metic operation constitutes one complex multiplication and one complex ad-
dition. Note that inversion of a positive definite w-by-w matrix can be done
by Cholesky factorization and requires about w3/6 operations [62].

When L-step prediction is used, the time update equations (4.3.7) and
(4.3.8) furthermore have to be calculated L − 1 extra times in each loop
in the recursions (the first prediction step comes “free of charge” from the
Kalman recursions), imposing a total extra cost of (L−1)(n2/2+n) arithmetic
operations on the numerical complexity of the filter.

Using the block-diagonal model matrices suggested in this work leads to
an alleviation of the numerical complexity as compared to the general KF.
This alleviation is mainly found in the time update equations. Normally,
(4.3.7) would require n2 operations, but require only n operations here, since
F is diagonal. The state prediction error covariance update (4.3.8) would
take 3n3/2 + nw2 + n2w/2 operations (assuming Q ∈ Cw×w) if general and
full model matrices were used, but here it can ideally be done in n2/2 opera-
tions. We have then assumed that the matrix GQG∗ has been precomputed.
For the rest of the equations in the KF cycle, the general KF has the same
complexity as when impulse response modelling is used. When subchannel
modelling is employed, complexity relaxation is achieved also for some of
these equations. In Appendix 4.F, we investigate some alternative KF for-
mulations but find that these do not lead to further computational gains for
this particular model structure.

For L-step prediction using measurements yt of dimension w and n = uwk
states, the total number of complex arithmetic operations per update in the
KF sums to

n2

(
w

2
+

3

2
+

L− 1

2

)
+ n

(
w2 +

3w

2
+ 3 + (L− 1)

)
+

w3

6
(4.4.1)

complex arithmetic operations when subchannel modelling is used. The com-
plexity is somewhat higher for impulse response modelling, see Table 4.1.

It should be noted that if the time varying matrix Jt is periodic with
period b, then the operation (4.3.1) in Table 4.1 only have to be carried out
b times and the stored results can then be reused periodically. However, it
is not evident that this saving in computation makes up for the additional
memory access that would then be necessary.

If the total number of subchannels to estimate and predict is w0, and
each filter covers a band of w subchannels, then w0/w (rounded upwards)
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KFs have to be run in parallel. However, if all of these bands use the same
state-space model, which will be the case if the same set of inputs, all using
the same set of pilots, are received in all bands, then the covariance matrices
in the KF:s are identical and need only be updated for one band.

Although a large part of the computational burden is alleviated by the
special matrix structures, the complexity is still quite high. However, as will
be seen in Chapter 8, in most cases the filter will quickly settle to a stationary
state, which makes it unnecessary to update the large covariance matrices.
Therefore, after a short initial phase of a few tens of iterations, the filter has
converged and requires only n(w + 2) or n(2w + 1) complex operations per
update for the estimation. The prediction x̂t+L|t = FL−1x̂t+1 adds a mere n
operations per update if the value of FL−1 is kept from one iteration to the
other. The filter needs to be re-initiated every time the model parameters
are updated, but this happens on a slow time scale (on the order of seconds).

4.5 Summary and discussion

We have in Section 4.2.1 discussed AR models that are parameterized by
the maximal Doppler frequency fD, such as the models adjusted to a Jakes
fading Doppler spectrum or to a flat Doppler spectrum. Such models can
be held fixed as long as the (estimated) maximal Doppler frequency remains
almost constant.

For autoregressive models that are adjusted to the detailed fading statis-
tics, the duration over which such models can be held constant will depend
on the duration over which the local fading environment remains almost
constant, in terms of strengths and angles of main propagation/ reflection/
scattering paths. This time is on the order of at least hundreds of millisec-
onds for most utilized combinations of UE velocities and distances to the
nearest significant scatterers. The stationarity of the noise and interference
environment is of importance. If the noise vector contains bursty interfer-
ence components, this will require frequent re-adjustments of the Kalman
estimators, to retain the best performance.

The remainder of the chapter discussed how to construct state space rep-
resentations of MIMO-OFDM time-varying channels. It was described how
these models can be used in conjunction with a KF to produce probability
density functions for channel estimates and predictions. The framework out-
lined in this chapter will be used in subsequent chapters to study channel
estimation, prediction, and link adaptation in various settings.
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4.A Some useful distributions

4.A.1 Definitions

The Gaussian distribution

The Gaussian distribution with mean value μ and variance σ2 is defined

N (x; μ, σ2) �
1√

2πσ2
exp

(
−(x− μ)2

2σ2

)
. (4.A.1)

The circular symmetric complex Gaussian distribution

The circular symmetric complex Gaussian distribution, or sometimes, for
short, just the Gaussian distribution, with mean value μ and variance σ2 is
defined

CN (h; μ, σ2) �
1

πσ2
exp

(
−|h− μ|2

σ2

)
. (4.A.2)

The notion ‘circular symmetric complex’ means that the real and imaginary
parts are independent and that both have the same variance σ2/2.

The non-central χ2 distribution

Let z = |h|2. If p(h|μ, σ2) = CN (h; μ, σ2), then p(z|μ, σ2) is a non-central
χ2-distribution with two degrees of freedom:

p(z|μ, σ2) = χ2(z; |μ|2, σ2) �
1

σ2
exp

(
−z + |μ|2

σ2

)
I0

(
2
√

z|μ|
σ2

)
, (4.A.3)

where I0(·) denotes the zeroth order modified Bessel function of the first kind.
(For a proof, see Appendix 4.B.) It should be noted that many references
implicitly assume σ2 = 1, simplifying the above expression somewhat. In
this thesis, we will however require the variance to be variable.

When μ = 0, the gain z has an exponential distribution:

p(z|σ2) = χ2(z; 0, σ2) =
1

σ2
exp

(
− z

σ2

)
. (4.A.4)

The Rice distribution

Let a = |h|. If p(h|μ, σ2) = CN (h; μ, σ2), then p(a|μ, σ2) is a Rice distribu-
tion:

p(a|μ, σ2) =
2a

σ2
exp

(
−a2 + |μ|2

σ2

)
I0

(
2a|μ|
σ2

)
. (4.A.5)

(This follows from a simple change of variables of (4.A.3).)
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For the special case μ = 0, the magnitude a has a Rayleigh distribution:

p(a|σ2) =
2a

σ2
exp

(
−a2

σ2

)
. (4.A.6)

4.A.2 Change of variables

The noncentral χ2 distribution

For the non-central χ2-distribution and a parameter α independent of z, it
holds that

χ2(z; |ĥ|2, σ2)dz = χ2(αz; α|ĥ|2, ασ2)d(.αz), (4.A.7)

since

1

σ2
exp

(
−z + |ĥ|2

σ2

)
I0

(
2|ĥ|

√
z

σ2

)
dz =

α

ασ2
exp

(
−αz + α|ĥ|2

ασ2

)
I0

(
2α|ĥ|

√
z

ασ2

)
dz. (4.A.8)

4.B Posterior distribution for the channel power

Denoting the real and imaginary part of a complex number h (e.g. a channel
coefficient) by hr and hi, respectively, we seek the pdf for z = h2

r + h2
i (the

channel power), conditioned on that h has a circular symmetric complex
Gaussian distribution with mean value μ = μr + jμi and variance σ2. This
is done by calculating P (t < z|μ, σ2, I) and then taking the derivative with
respect to z. The prior assumption gives that hr and hi are uncorrelated and
that both has variance σ2/2. Let f(z) = p(z|μ, σ2, I). Then∫

t<z

f(t)dt =

∫
h2

r+h2
i <z

N (hr; μr, σ
2/2)N (hi; μi, σ

2/2)dhrdhi

=

∫
h2

r+h2
i <z

1

πσ2
e(−(hr−μr)2−(hi−μi)2)/σ2

dhrdhi.

This can be rewritten by use of the law of cosines, which says that the sides
in a triangle are related as a2 = b2 + c2 − 2bc cos θ, where θ is the angle
between sides b and c. Changing to polar coordinates, we now have

∫
t<z

f(t)dt =

√
z∫

0

2π∫
0

1

πσ2
e(−|μ|2−r2+2|μ|r cos θ)/σ2

dθrdr.
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Using I0(z) = 1
π

∫ π

0
exp(z cos θ)dθ, where I0(z) is the modified Bessel function

of the first kind, the above evaluates to

∫
t<z

f(t)dt =

√
z∫

0

2
e−(|μ|2+r2)/σ2

σ2
I0(2|μ|r/σ2)rdr.

Finally, taking the derivative with respect to z and noting that d
dz

∫ √z
f(t)dt =

f(
√

z)/2
√

z, we have

p(z|μσI) = e−(|μ|2+z)/σ2

I0(2|μ|
√

z/σ2)/σ2.

This is the non-central χ2-distribution with mean value |μ|2 + σ2 and vari-
ance σ2(2|μ|2 + σ2). Note that μ and σ2 are the mean value and vari-
ance, respectively, of the circular symmetric complex Gaussian distribution
p(hr + jhi|μ, σ2, I).

4.C Alternative formulations of the non-central

χ2-distribution

In pioneering works in the field of channel prediction ([4],[63],[64]), a pdf

fγ(γ|γ̂) =
U(γ)U(γ̂ − γ̄σ2/σ2

h)

γ̄σ2/σ2
h

exp

(
−γ + γ̂ − γ̄σ2/σ2

h

γ̄σ2/σ2
h

)

× I0

(
2

γ̄σ2/σ2
h

√
γ(γ̂ − γ̄σ2/σ2

h)

)
, (4.C.1)

is used to describe an agent’s state of knowledge about the future SNR γ
when the channel is subject to Rayleigh fading. Here we will show that this
pdf in fact can be identified as a noncentral χ2-distribution. In (4.C.1), γ̂
is the predicted SNR, γ̄ is the mean SNR, σ2 is the total error variance for
the predicted complex channel gain, σ2

h is the total channel variance, and
U(·) is the Heaviside step function. In terms of the channel coefficient h, the
predicted coefficient ĥ, the transmitted signal power S, and the noise power
σ2

v , these quantities can be written

γ =
S|h|2
σ2

v

, γ̂ =
S(|ĥ|2 + σ2)

σ2
v

, γ̄ =
Sσ2

h

σ2
v

. (4.C.2)

Note that γ̂ − γ̄σ2/σ2
h = S|ĥ|2/σ2

v . With c = S/σ2
v we can express (4.C.1) as

fγ(γ|γ̂) =
U(c|h|2)U(c|ĥ|2)

cσ2
exp

(
−c|h|2 + c|ĥ|2

cσ2

)
I0

⎛
⎝2

√
c|h|2c|ĥ|2

cσ2

⎞
⎠ ,

(4.C.3)
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which now clearly takes the form of a noncentral χ2-distribution:

fγ(γ|γ̂) = χ2(c|h|2; c|ĥ|2, cσ2). (4.C.4)

A change of variables (see Appendix 4.A.2) from c|h|2 to |h|2 gives

χ2(c|h|2; c|ĥ|2, cσ2)d(c|h|2) = χ2(|h|2; |ĥ|2, σ2)d(|h|2). (4.C.5)

The squared channel coefficient z = |h|2 hence has pdf

p(z|ĥ, σ2) =
1

σ2
exp

(
−z + |ĥ|2

σ2

)
I0

(
2|ĥ|

√
z

σ2

)
, z > 0, (4.C.6)

which is the form used in this thesis.

4.D Iterative channel estimation

In PSAM, it is assumed that pilot symbols are fully known to the receiver.
However, a part of the training symbols may be allowed to carry a small
amount of feedback information. By letting these “control” symbols belong
to a small constellation of M symbols, each control symbol can carry log2 M
bits, while retaining a function as training symbol. This works as follows.
Primary channel estimates based on true pilots are first produced for the
control symbol sub-locations. The control symbols are then detected based
on the primary estimates. The detected symbols are fed back into the channel
estimator/predictor in a secondary phase under the pretention that they are
true, thus functioning as regular pilot symbols. The information carried by
control symbols can be used for feedback information such as CSI feedback
or modulation format recommendations.

The procedure described above was proposed in the Wireless IP project
[65] and then also in work on the WINNER I downlink [66]. It is a special case
of the concept of iterative channel estimation (ICE). Early iterative channel
estimators used uncoded symbols [67]. Later, channel codes have been used
to minimize the risk for erroneous decisions. The most powerful iterative
channel estimation technique known to date is when turbo codes are used as
channel codes. This technique is known as turbo equalization [68]. To find
the most probable channel coefficients from coded noisy symbols, iterative
expectation maximization (EM) algorithms have proved to be efficient, see
e.g. [69] and simplified algorithms in [70].

Most often, the control symbols are correctly detected and will then op-
erate as any other pilot. Occasionally though, a control symbol is interpreted
as the wrong symbol which introduces an unexpected error. We now examine
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the impact of such errors. Let the measurement of a control symbol in the
secondary phase be

y = (ŝ + s̃)h + v, (4.D.1)

where s = ŝ + s̃ is the true control symbol and ŝ is the (possibly wrongly)
detected control symbol. Here, h is the unknown channel coefficient that we
wish to estimate, v is white additive noise whose variance is assumed known,
and ŝh has variance Es, where Es is the mean received symbol energy. The
term s̃h here acts as an extra noise term and we are therefore interested in
knowing its variance.

If the SNR is moderately high, we may assume that when an error oc-
curs, then s̃h = dmin, where dmin is the Euclidean distance between the
true received symbols sh and the received symbol s1h lying closest to sh.
The symbol error rate Pe, i.e. the probability for d �= 0, can then be upper
bounded by the union bound [71]

Pe ≤ (M − 1)Q

(
dmin√
N0/2

)
. (4.D.2)

We then have var(s̃h) ≤ |dmin|2Pe.
To take a specific example we may mention the Wireless IP project [65],

in which an early adaptive OFDM downlink was designed in which 10 %
of the sub-symbols were used for the channel estimation and prediction.
Two thirds of these sub-symbols were allocated for control symbols, while
the others were known reference symbols. The control symbols were chosen
to be QPSK symbols. In the QPSK constellation, adjacent symbols have
separation

√
2Es, which means that the noise contribution from erroneous

detection, normalized by the received signal energy, is 2Pe. For example,
Pe < 10−2 means that the normalized noise contribution must be at most
-17 dB. If the additive noise v has considerably higher power than this value,
then the impact of erroneous detection can be neglected.

4.E A simplified prediction model

To simplify the simulating of a communication system that uses prediction, it
was suggested in [72] that a prediction of a channel coefficient can be simply
modelled as

�̂ = ch + �̃, (4.E.1)

where h is the true channel coefficient and c = 1 − σ2
h̃
/σ2

h, and σ2
h and σ2

h̃
are the channel variance and the prediction error as produced by an optimal
predictor, respectively. �̃ is here white noise with variance c(1 − c)σ2

h and
uncorrelated with h.
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This simple model can be used to model the predicted channel by gen-
erating a scalar estimate ĥ within each time-frequency resource block of an
OFDM system, requiring one appropriately scaled Gaussian number to be
generated per resource block. This model is useful e.g. in system-level simula-
tions, where simplified models of the performance of channel estimation and
prediction algorithms are needed for efficient simulation of a large number
of communication sessions. However, the model 4.E.1 does not fully comply
with the correlation properties featured by an optimal predictor. We now
analyze how the simplified model differs from an optimal predictor.

For an optimal predictor, it holds that the prediction error h̃ = h − ĥ is
independent of the optimal prediction ĥ rather than of h. It then holds from
the variance σ2

ĥ
of the optimal prediction that

σ2
ĥ

= σ2
h − σ2

h̃
. (4.E.2)

It is easy to verify that

‖{h, ĥ, h̃}‖2 =

⎛
⎝σ2

h σ2
ĥ

σ2
h̃

σ2
ĥ

σ2
ĥ

0

σ2
h̃

0 σ2
h̃

⎞
⎠ . (4.E.3)

For the model (4.E.1) it holds that

‖{h, �̂, �̃}‖2 =

⎛
⎝ σ2

h cσ2
h 0

cσ2
h cσ2

h c(1− c)σ2
h

0 c(1− c)σ2
h c(1− c)σ2

h

⎞
⎠ =

⎛
⎝σ2

h σ2
ĥ

0

σ2
ĥ

σ2
ĥ

cσ2
h̃

0 cσ2
h̃

cσ2
h̃

⎞
⎠ .

(4.E.4)
Thus, the statistical properties (4.E.4) of the model (4.E.1) differ only very
slightly from the statistical properties (4.E.3) of a realizable predictor. The
model (4.E.1) should therefore be adequate to use in most simulation situa-
tions.

4.F Alternative KF formulations

It was seen in Section 4.4 that the special matrix structures considered here
help to reduce the numerical complexity considerably, as compared to the
general KF. There are however formulations for the KF other than the stan-
dard formulation that could potentially reduce the numerical complexity even
further. We study a few of these alternative formulations below.

4.F.1 The CKMS recursions

A strength of the KF recursions is that they are indifferent to whether or
not the coefficient matrices are time varying. We have used this fact and
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Table 4.2: Numerical complexity of the general CKMS algorithm and the cor-
responding relaxations emerging from block-structured matrices. subchannel mod-
elling is assumed (the complexity for impulse response modelling is parenthesized).
The term “unchanged” refers to the fact that the expression in question is the same
as for the general case.

operation
complexity

(general case)
complexity

(here)
Ui = FLi n2α nα
Vi = JLi nwα uwαk(nwα)
Kp,i = KiR

−1
e,i nw2 + w3/6 unchanged

Ki+1 = Ki −UiR
−1
r,i V

∗
i nα2 + nwα/2 + α3/6 unchanged

Li+1 = Ui −Kp,iVi nwα unchanged
Re,i+1 = Re,i −ViR

−1
r,i V

∗
i wα2 + αw2/2 unchanged

Rr,i+1 = Rr,i −V∗
i R

−1
e,i Vi w2α + wα2/2 unchanged

Pi+1 = Pi − LiR
−1
r,i L

∗
i nα2 + n2α/2 unchanged

allowed the regressor matrix Jt to be time varying. However, if we let Jt be
static so that all model matrices are constant, one would expect that part
of the computational burden of the KF recursions could be lifted from the
channel estimator if this fact was used in some way. The Chandrasekhar,
Kailath, Morf, Sidhu (CKMS) recursions [49] are an exact reformulation of
the standard KF recursions for the special case of constant model parameters,
that generally require fewer operations per update than the standard KF.

Instead of propagating Pt|t and Pt directly, the CKMS formulation prop-
agates four smaller matrices Kt, Lt, Re,t, and Rr,t. The matrices Lt and Rr,t

are initiated at t = 0 by a spectral factorisation

−L0R
−1
r,0L

∗
0 = FΠ0F

∗ + GQG∗ −K0R
−1
e,0K

∗
0 − Π0, (4.F.1)

with K0 = FΠ0H
∗ and Re,0 = R+HΠ0H

∗. The spectral factorisation yields
a matrix L0 of size n × α, and a matrix Rr,0 of size α × α. The lower the
α, the more beneficial the use of CKMS as compared to the standard KF
formulation. The exact CKMS recursions and their corresponding numerical
complexity is presented in Table 4.2. Unfortunately, very little is gained
by exploiting the special matrix structures. Taking into account that the
spectral factorization (4.F.1) has to be carried out every time the model is
updated, it is unlikely that the CKMS filter would be useful to us in the
present context.
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4.F.2 Array algorithms

The KF can also be implemented as an array algorithm. One then updates
so called square-root factors of Pt|t or Pt. To exemplify, we show a so called
information array filter, where inverses of the state estimation error covari-
ances are propagated.

Construct the left hand side of (4.F.2) below and use QR decomposition
to form⎛

⎜⎜⎝
R−∗/2 0 0

−F−∗J∗tR
−∗/2 F−∗P−∗/2 0

Q∗/2G∗F−∗J∗tR
−∗/2 −Q∗/2G∗F−∗P−∗/2

t I

−y∗t R
−∗/2 x̂∗tP

−∗/2
t 0

⎞
⎟⎟⎠

= Θ

⎛
⎜⎜⎜⎝

R
−∗/2
e,t −K∗

p,tP
−∗/2
i+t (∗)

0 P
−∗/2
i+t (∗)

0 0 (∗)
−e∗tR

−∗/2
e,t x̂∗t+1P

−∗/2
t+1 (∗)

⎞
⎟⎟⎟⎠ , (4.F.2)

where Θ is a unitary matrix satisfying ΘΘ∗ = I. Comparing the blocks
at position {4, 2} in the matrices in (4.F.2), it is seen that this operation

performs an updating of x̂∗tP
−∗/2
t to x̂∗t+1P

−∗/2
t+1 . The (∗) are elements whose

values are unimportant here.
Array algorithms can be implemented in such a way that they take vir-

tually the same number of arithmetic operation to iterate as the standard
KF. Also, they are often more numerically stable than more straightforward
KF formulations. However, as was the case with the CKMS algorithm, they
too suffer from not being able to exploit the block-structures of the matrices
presented in this thesis. Since we have not seen any tendency of numeri-
cal misdemeanour in the algorithms presented in the main text, we find no
reason to use array KF implementations here.

4.G Convergence of the periodic filter

Consider the model

xt+1 = Fxt + Gut,

yt = Jtxt + vt,
(4.G.1)

where ut, vt, and x0 are Gaussian, zero-mean, white, and uncorrelated, and

‖[uT
t ,vT

t ,xT
0 ]T‖2 = diag(Q,R, Π0), (4.G.2)

where Q > 0, R > 0, and Π > 0.
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Theorem 4.G.1 (Filter convergence for time invariant models). Assume the
state space model (4.G.1) with a constant measurement matrix Jt � J so that
the model is time invariant. If the eigenvalues of F are strictly inside the
unit circle, the associated Kalman filter converges so that the filter gain Kf,t

approaches a steady state Kf , i.e. Kf,t → Kf as t →∞.

Proof. See [56, Ch. 4].

Theorem 4.G.2 (Filter convergence for periodic models). Assume the state
space model (4.G.1) with periodic matrices {Jt} such that Jt = J′t mod b, i.e.
Jt ∈ {J′0, . . . ,J′b−1} for known matrices Ji, 0 ≤ i < b. Then if the eigenvalues
of F are strictly inside the unit circle, the associated Kalman filter converges
to a periodic steady state, so that the Kalman filter gain Kf,t periodically
assumes some values {K′

f,0 . . . ,K′
f,b−1}, i.e. Kf,ib+j = K′

f,j as i →∞ for all
j ∈ [0, b).

Proof. We aim to prove that the one-step prediction error covariance matrix
Pt = ‖xt − x̂t|t−1‖2 periodically assumes some values {P′0 . . . ,P′b−1}, i.e.
Pib+j = P′j as i →∞ for all j ∈ [0, b). Since Kf,t is a function of Pt, it must
then hold that Kf,ib+j = K′

f,j as i →∞ for all j ∈ [0, b).
Construct the time-invariant augmented state space model⎡

⎢⎢⎢⎣
xt+b

...

...
xt+2b−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0 · · · 0 F
0 · · · 0 F2

...
...

0 0 Fb

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

xt
...
...

xt+b−1

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

G 0 0 · · · 0
FG G 0 · · · 0
F2G FG G 0 0

...
. . .

. . .
. . .

Fb−1G G

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ut+b−1
...
...

ut+2b−2

⎤
⎥⎥⎥⎦

= F(aug.)x
(aug.)
t + G(aug.)u

(aug.)
t⎡

⎢⎢⎢⎣
yt
...
...

yt+b−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
J′0 0 · · · 0

0 J′1
. . .

...
...

. . .
. . . 0

0 · · · 0 J′b−1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

xt
...
...

xt+b−1

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

vt
...
...

vt+b−1

⎤
⎥⎥⎥⎦

= J(aug.)x
(aug.)
t + v

(aug.)
t ,

(4.G.3)

where t = 0, b, 2b, . . .. The zero matrices 0 in F(aug.), G(aug.), and J(aug.)

indicate 0n×n, 0n×xu, and 0w×n, respectively, where n, xu, and w are the
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dimensions for xt, ut, and yt, respectively. The augmented vectors u
(aug.)
t ,

v
(aug.)
t , and x

(aug.)
0 are Gaussian, independent, white, and zero-mean with

time-invariant covariance matrices

‖u(aug.)‖2 = diag(Q, . . . ,Q),

‖v(aug.)‖2 = diag(R, . . . ,R),
(4.G.4)

and

‖x(aug.)
0 ‖2 =

⎡
⎢⎢⎢⎢⎢⎣

Π0 Π0F
∗ Π0F

∗2 Π0F
∗3 · · ·

FΠ0 Π1 Π1F
∗ Π1F

∗2 · · ·
F2Π0 FΠ1 Π2 Π2F

∗ · · ·
F3Π0 F2Π1 FΠ2 Π3 · · ·

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ , (4.G.5)

where Πt is given recursively by Πt+1 = FΠtF
∗ + GQG∗, t ≥ 0. The model

(4.G.3) is identical to (4.G.1) except that it models the state vectors in
batches of b instances of the original state vector. It is easy to verify that
the eigenvalue decomposition of F(aug.) is

F(aug.) = VFDFV−1
F (4.G.6)

with

VF =

⎡
⎢⎢⎢⎣
In 0 0 F−b+1

0
. . . 0

...
...

. . .
. . . F−1

0 · · · 0 In

⎤
⎥⎥⎥⎦ , and V−1

F =

⎡
⎢⎢⎢⎣
In 0 0 −F−b+1

0
. . . 0

...
...

. . .
. . . −F−1

0 · · · 0 In

⎤
⎥⎥⎥⎦ ,

(4.G.7)
and

DF =

⎡
⎢⎢⎢⎣
0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0 Fb

⎤
⎥⎥⎥⎦ , (4.G.8)

where zero matrices 0 indicate 0n×n. Since the eigenvalues of F lie strictly
inside the unit circle, it is clear that also the eigenvalues of F(aug.) are inside
the unit circle. In light of Theorem 4.G.1, the “one-step” prediction error
covariance of the Kalman filter associated with (4.G.3),

P
(aug.)
t =

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

xt+b
...
...

xt+2b−1

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

x̂t+b|t+b−1
...
...

x̂t+2b−1|t+b−1

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

2

, t = 0, b, 2b, . . . , (4.G.9)
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will then converge to a steady state solution P(aug.). Evidently, the upper
left n× n-block of P

(aug.)
t can be identified as Pt, where t = ib, i ∈ N, which

hence converges to a constant value P′0. Since Pt for other time instants can
be calculated by the Ricatti equation

Pt+1 = FPtF
∗ + GQG∗ − FPtJ

∗
t (JtPtJ

∗
t + R)−1JtPtF, (4.G.10)

and all matrices in (4.G.10) are b-periodic, periodicity holds for all Pt.
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4.H Model matrix structures

Here we summarize the sizes and structures of the matrices in the system
model (4.2.41):
X ∈ Ck×k diagonal
Y ∈ C

k×1 full
Z ∈ C1×k full
Rγ ∈ Rm×m diagonal
D ∈ RN×m 1 non-zero element/column or full
A ∈ Ckx×kx diagonal
B ∈ Ckx×x k non-zero elements/column, 1 non-zero el-

ement/row
C ∈ Cx×kx 1 non-zero element/column, k non-zero el-

ements/row
Fw ∈ Cw×N full
T = Iw diagonal (subchannel modelling)
T ∈ Cw×m full (impulse response modelling)
T C ∈ Cw×kw 1 non-zero element/column, k non-zero el-

ements/row (subchannel modelling)
T C ∈ Cw×km full (impulse response modelling)
Rh ∈ Cw×w full (subchannel modelling)
Rh ∈ Rm×m diagonal (impulse response modelling)
L ∈ Cw×w full (subchannel modelling)
L ∈ Rm×m diagonal (impulse response modelling)
F ∈ Ckxu×kxu diagonal
G ∈ Ckxu×xu k non-zero elements/column, 1 non-zero el-

ement/row
H ∈ Cwu×kwu 1 non-zero element/column, k non-zero el-

ements/row (subchannel modelling)
H ∈ Cwu×kmu w non-zero elements/column, km non-

zero elements/row (impulse response mod-
elling)

Φt ∈ Cw×wu 1 non-zero element/column, u non-zero el-
ements/row

Jt ∈ C
w×kwu 1 non-zero element/column, ku non-zero

elements/row (subchannel modelling)
Jt ∈ Cw×kmu full (impulse response modelling)



Chapter 5
A channel estimation case study

The next generation wireless systems complying with IMT-advanced require-
ments need to operate in widely different deployment and usage scenarios.
Support for flexible resource allocation is therefore important. This chap-
ter illustrates a case study in which we investigate how channel estimation
performs in a number of different OFDMA subchannel allocation schemes.
We evaluate three types of channel estimation methods, which differ in the
amount of data they use for producing estimates. We also investigate the
impact of using various training signal designs (pilot patterns), in order to
assess what the optimal strategy is when designing pilot patterns. The study
is undertaken in various fading environments and for different user equipment
(UE) velocities, based on the framework outlined in Chapter 4. The results
show that channel estimation can perform well enough for time-frequency
localized resources as small as 22 sub-symbols with two pilots in many im-
portant scenarios. The results provided can be used to identify appropriate
subchannel allocations for the next generation OFDMA based wireless sys-
tems.

5.1 Introduction

Orthogonal Frequency Division Multiple Access (OFDMA) is a promising
multiple access technique for future mobile communication systems because
of its potential for high spectral efficiency. In a wireless multiuser system,
mobile users will generally experience frequency selective and time varying
(fading) radio channels. In some situations such as high Signal-to-Noise
Ratios (SNR) and modest vehicular speeds, the channel quality can be ac-
curately predicted to enable utilization of the channel frequency selectivity
and time-variability for link adaptation and multi-user scheduling gains [65].
In other scenarios such as low SNR, high speeds and/or multicast transmis-
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sion, the multi-path fading channel has to be mitigated by diversity-based
transmission techniques to obtain robust transmission with low outage prob-
ability [32]. Good frequency diversity is enabled by allocating distributed
subchannels for each user, since the fading of these resources then becomes
almost uncorrelated. However, under such circumstances a channel estima-
tor cannot take advantage of frequency correlation in the channel estimation
procedure. Thus, there is a trade-off for the overall performance of a diver-
sity based OFDMA system between diversity gains and channel estimation
performance. The performance of channel estimation depends on the accept-
able pilot overhead and deployed channel estimation algorithm, which may
be limited by computational complexity.

In the EU FP6 WINNER II project [31], a Discrete Fourier Transform
(DFT) precoded distributed subchannel scheme was defined, denoted Block
Interleaved Frequency Division Multiple Access (B-IFDMA), for the diversity-
based uplink mode [73], [74]. The corresponding scheme for the downlink
without DFT precoding is denoted Block Equidistant Frequency Division
Multiple Access (B-EFDMA). The channel estimation performance for these
schemes has been studied within the WINNER II project assuming a fre-
quency multiplexed pilot grid and 2D Wiener filter based channel estima-
tion, [75], [76], [77]. With a dedicated frequency multiplexed pilot grid, the
channel estimation problem becomes the same for both schemes.

In this chapter we complement the results in [75], [76], [77] by exploring
how channel estimation performs depending on how many measurements are
used in the estimation process. We compare different channel estimators in
terms of their ability to correctly recover channel coefficients under different
subchannel allocation schemes and different pilot patterns. The performance
is evaluated in various fading environments and for different UE velocities.
The overall goal of the investigations in this chapter is to guide in the selec-
tion of a proper subchannel allocation and pilot pattern for diversity-based
OFDMA systems in the different evaluated scenarios.

5.2 System model

Orthogonal Frequency Division Multiplexing (OFDM) divides the radio chan-
nel resource into a time-frequency grid. In OFDMA, different subchannels
and/or OFDM symbols can be allocated to different users. The way resources
are assigned to users is here referred to as the block allocation (BA).

Six different BAs proposed by the WINNER II project for diversity-based
transmission are studied [74]. All BAs investigated here are variants of B-
IFDMA and B-EFDMA, presented in [73], [74]. Five of the six BAs use
a 4-subchannels-by-3-OFDM-symbols block as smallest common unit, here
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Table 5.1: Dimensions for the six BAs used in this chapter. In a dimension
specification a× b, a refers to frequency and b refers to time.

name bin size (basic blocks) bin size (sub-symbols)

B-IFDMA 1x1 1× 1 4× 3
B-IFDMA 1x2 1× 2 4× 6
B-IFDMA 2x1 2× 1 8× 3
B-IFDMA 2x2 2× 2 8× 6
LFDMA 2× 2 8× 12
IFDMA – 1× 12
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Figure 5.1: Illustration of investigated block allocations. The left side shows
examples of allocations for multiple users. B-IFDMA 1x1, B-IFDMA 1x2, and B-
IFDMA 2x1 are represented by users 1, 3, and 4 in the far left figure, respectively.
(B-IFDMA 2x2 is not presented in the left figure.) The right side shows optimal
or near-optimal pilot patterns as proposed in Section 5.4.

denoted a basic block. These BAs, which we call B-IFDMA 1x1, B-IFDMA
1x2, B-IFDMA 2x1, B-IFDMA 2x2, and LFDMA (localized frequency divi-
sion multiple access), assign to each user, at each scheduling slot of 24 OFDM
symbols, multiple ‘bins’ consisting of one basic block, two basic blocks stacked
in frequency, two basic blocks stacked in time, two-by-two basic blocks, and
two-by-four basic blocks, respectively. In the sixth BA, IFDMA (interleaved
frequency division multiple access), each bin consists of one single subchan-
nel with 12 OFDM symbols. The dimensions for all six BAs can be seen in
Table 5.1.

At each scheduling slot, each user is allocated one or more bins, which
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are allocated equidistantly in frequency with a spacing considerably larger
than the channel coherence bandwidth. See Figure 5.1. The data rate for
each user can thus be adjusted by varying the bin size and the number of
bins per scheduling slot. To efficiently support robust transmission of small
packets, a small bin size is desirable. As shown in [73, Figure 9], there is a
large diversity gain for B-IFDMA and IFDMA compared to LFDMA.

While small bins scattered over a large portion of the frequency band
ensures data integrity, it impedes channel estimation; all channel coefficients
within a bin are fairly well correlated, but the correlation between coefficients
in different bins is small. Hence we would expect B-IFDMA 1x1 and IFDMA
to yield a comparably poor channel estimation performance while LFDMA
should give good estimation results.

The bins are also separated in time. We assume half-duplex, so that each
scheduling slot consists of 12 OFDM symbols for the uplink, followed by 12
OFDM symbols for the downlink. The scheduling slot period is therefore 24
OFDM symbols which means that there is, e.g. a gap of 18 OFDM symbols
between consecutive B-IFDMA 1x1 blocks, but only a gap of 12 OFDM
symbols between consecutive LFDMA blocks.

We here assume the use of persistent scheduling in the uplink, which
means that the resource allocation for any given user is static and does not
change over time. By assuming so, we guarantee that measurements of past
bins are always available, so that the channel estimator has historic data
at its disposal1. Eight blocks of 12 sub-symbols are allocated per user at
each scheduling slot. This means, for example, that eight bins per slot are
allocated when B-IFDMA 1x1 and IFDMA are used, and one bin per slot is
allocated when LFDMA is used.

The system parameter values that we use are those proposed by the WIN-
NER project for urban base coverage [78]; the FFT bandwidth is 80 MHz
divided on 2048 subchannels, yielding a subchannel spacing of approximately
39 kHz and an OFDM symbol duration of 25.6 μs (+3.2 μs for the cyclic pre-
fix). The carrier frequency is set to 3.7 GHz.

If the cyclic prefix is at least as long as the channel’s delay spread, and if
the influences from non-linear system components are negligible, then inter-
carrier and inter-symbol interference is avoided. The received signal yt over

1No such assumption is required for the downlink, since pilots can there be assumed
to be available at all pilot sub-locations, regardless of whether payload is transmitted and
to whom it is transmitted. We assume single-antenna transmissions. In general, when
using multi-antenna beamforming, two types of pilots are required: antenna-specific pilots
(common reference signals), and beam-specific pilots (demodulation reference signals).
The pilots discussed here are demodulation reference signals, used for coherent reception,
but the distinction is not needed in the single transmit antenna case.



Chapter 5. A channel estimation case study 105

a portion of w parallel subchannels can then be modelled by (see Chapter 4)

yt = Φtht + vt, (5.2.1)

where w is 1, 4, or 8 depending on which BA is used. The w-by-w diagonal
matrix Φt holds the symbols transmitted over the w subchannels, the w-
vector ht is the fading channel coefficients that we seek to estimate, and the
elements of the w-vector vt is mutually uncorrelated circular symmetric com-
plex Gaussian noise with unit variance. Choosing the number w of parallel
subchannels to take into each measurement is a tradeoff between complexity
and performance; measuring many subchannels at a time allows the chan-
nel estimator to take frequency correlation into account which improves the
estimate, but it also increases numerical complexity.

The frequency-domain vector of channel coefficients ht are modelled on
block-diagonal state-space form:

xt+1 = Fxt + Gut,

ht = Hxt,
(5.2.2)

where the block-diagonal matrices F, G, and H each consist of w blocks.
Each such triplet {X,Y,Z} of blocks (or submatrices) is a model of order
k that models one subchannel. Thus, with the terminology introduced in
Chapter 4, we here use subchannel modelling, not impulse response mod-
elling. In this chapter we assign a time-invariant model to the dynamics of
the subchannels, thus assuming constant velocity and Doppler spectrum.

The subchannel model, the same for all w subchannels, is set up in such
a way that it accommodates a certain Doppler spectrum. We study two dif-
ferent fading statistics. One, which we term rich fading, means to represent
a scenario typical for cities, where sideways reflexes are generated by nearby
buildings. The other, termed Jakes-like fading, represents sub-urban condi-
tions with the mobile user surrounded by many equidistant scatterers. See
Section 4.2.1 for details on how to construct these models. It is generally eas-
ier to perform channel estimation in the Jakes-like case than in rich fading.
The two assumed Doppler spectra are plotted in Fig. 5.2. In the figure, the
velocity is set to 50 km/h, giving a practical maximum Doppler frequency of
just below 200 Hz for that velocity at a 3.7 GHz carrier frequency, although
the models will allow some amount of higher frequencies.

The correlation between subchannels, which is crucial to channel esti-
mation performance, is described by the channel model. The model used
here is the WINNER II C2 Non-Line-Of-Sight (NLOS) Power Delay Pro-
file (PDP)[79], reproduced in Section 2.3.2. These correlation properties are
built into the channel model by scaling the w-by-w covariance matrix for the
process noise ut in the model (5.2.2) in such a way that the covariance matrix
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Figure 5.2: Doppler spectra for the two fading scenarios.

for the vector of channel coefficients ht is the Fourier transform of the PDP
(see Theorem 4.2.1 in Chapter 4).

5.3 Pilot-aided channel estimation

Pilot-aided channel estimation inserts known symbols, called pilots, into the
time-frequency grid. The specific choice of sub-locations for these pilots
is referred to as the pilot pattern. By considering only the pilots in the
measurements, disregarding all the payload symbols and inserting zeros into
Φt at payload sub-locations, the pilot matrix Φt in (5.2.1) becomes known
but time-variant.

It is of interest to keep the pilot overhead low, i.e. the ratio between
number of pilots and the total number of sub-symbols. In all the BAs that
we study here, the pilot overhead is 1/12.

Since persistent scheduling is used in the uplink case, the channel esti-
mator has access to a continuous flow of pilot measurements on which it can
base its channel estimates. We are interested in channel estimation after a
whole bin has been received, so that measurements all the way to the end of
the bin are available. We consider three cases as displayed if Figure 5.3:

B-MMSE filters, which stands for Block -MMSE filters, base their estimates
only on measurements within the bin. Historic data are not considered.

Kalman (KF) filters continuously produce estimate from the most recent
measurement and take all past measurements into account. However,
no “future” measurements are used, so that estimates for channel coef-
ficients early in the bin are mostly based on measurements from earlier
bins.
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Smoothed Kalman filters use all available measurements and can be pro-
duced only when all the pilots of a bin have been received.

current time

… ……

… ……

time
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MMSE
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Kalman 

filter

KF with 

smoothing

Figure 5.3: Schematic illustration of the three types of channel estimators ex-
amined. Here, the LFDMA block allocation is used. Black squares indicate pilot
measurements that are used for forming channel estimates, while white squares
are pilots disregarded by the respective estimators.

Figure 5.3 illustrates how the different types of estimators use available mea-
surements. Below, we describe briefly how the respective estimators operate.

5.3.1 Non-smoothed Kalman filter

The state-space model (5.2.2) enables us to directly write down the optimal
Kalman observer of the state vector xt (see Section 4.3):

x̂t|t = (I−Kf,tH)F︸ ︷︷ ︸
At

x̂t−1|t−1 + Kf,tyt. (5.3.1)

The so called filtered state estimate x̂t|t is the minimum mean square estimate
given all measurements up to time t. We assume in this chapter that enough
pilot data has then been received that the channel estimator has settled to a
steady state. The Kalman gain Kf,t, which is generally time-dependent and
needs to be updated by a computationally demanding Riccati equation, will
then be periodic-constant since the pilot matrix Φt is periodic, see Section



108 5.3. Pilot-aided channel estimation

4.3.2. The periodic series of matrices {Kf,t} may therefore be precomputed.
For the same reason, the matrix At is also known. Once the state estimation
vector has been computed, channel coefficient estimates are calculated by

ĥt|t = Hx̂t|t. (5.3.2)

5.3.2 Smoothed Kalman filter

The KF estimate (5.3.1) may be improved upon by smoothing the estimates.
Assume that the bin begins at time t1+1 and ends at time t2. Since measure-
ments up to and including time t2 is available, we may produce the smoothed
estimates ĥt1+1|t2 , ĥt1+2|t2 , . . . , ĥt2|t2 instead of ĥt1+1|t1+1, ĥt1+2|t1+2, . . . , ĥt2|t2
as the non-smoothed KF would produce. Smoothed Kalman estimates can
be computed from the one-step predictions x̂t|t−1, which are computed with
the non-smoothed KF:

x̂t|t2 = x̂t|t−1 +

t2∑
j=t

Bj(yj −Hx̂j|j−1), (5.3.3)

where the matrices Bj may be precomputed here (see [56, Ch. 7]). Again,
estimates of the channel coefficients are produced by (5.3.2).

5.3.3 B-MMSE

The last channel estimation algorithm that we examine is the most commonly
suggested in the literature. It conducts channel estimation bin-wise, basing
the estimates only on the measurements taken from the bin. The theory
behind this type of estimator was presented in Section 3.1. Such algorithms
go by many names2; we refer to it here, as in Chapter 3, as the block minimum
mean square error (B-MMSE) estimator.

The B-MMSE estimator works as follows: given two Gaussian vectors
h and y with cross-covariance Rhy and the latter with covariance Ry, the
optimal least squares estimate of h given y is

ĥ = μh + RhyR
−1
y (y − μy), (5.3.4)

where μh and μy are the mean values of h and y, respectively, which we here
set to all-zeros. The matrices Rhy and Ry can be relatively easily derived
from the models (5.2.1) and (5.2.2) by setting up an extended state-space
over all the time steps in the bin.

2The name Wiener filters is common in the literature. That notion however has am-
biguous meaning so we refrain from using it here.
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We here use an alternative method where we use the smoothed Kalman
filter to produce the B-MMSE estimate. The vector of channel coefficients ht

is associated with a prior distribution that represents the knowledge that we
have about the channel before measurements have been received. According
to Section 3.2.3, this prior distribution is set as p(ht|I) = CN (h; 0,Rh) for
all t, where Rh is the (known) covariance matrix for the channel coefficients
over the w subchannels, with the SNR along is diagonal, since the noise has
unit variance. By using this prior and running the smoothed KF over only
one bin, so that it does not necessarily converge, the B-MMSE estimate is
retrieved, because no past data is then utilized. Alternatively, the smoothed
KF run to convergence but with the bins extensively separated in time can
also be used to produce B-MMSE estimates. Both these approaches are
identical to (5.3.4).

In the present investigation, we are not directly interested in the estimates
(5.3.2) and (5.3.4), but rather by the Normalized Mean Square Error (NMSE)
that they give rise to. Assuming a correct modelling of the actual fading
channel conditions, NMSE values can be calculated directly from the model
without conducting simulation, see Section 4.3 and Equation (4.3.14).

Of the three estimation methods, the smoothed KF will always have the best
performance, since it uses all past measurements. The B-MMSE estimator
and the non-smoothed KF will outperform one another depending on situa-
tion; while the B-MMSE estimator only uses local data and keeps no record
of measurements of previous bins, the non-smoothed KF learns from history.
However, the B-MMSE filter will use all data that it has available even for
estimating the channel coefficients located early in the bin. As a contrast,
the non-smoothed KF will generally give poor performance for early channel
coefficients, since it at that point has only historic measurements to base its
decision on.

Before evaluating the respective channel estimation methods on the six
different BAs, we need to define a performance criterion with which the
channel estimators can be evaluated.

5.3.4 Criterion

For any particular channel coefficient h (an element in ht), the channel es-
timator produces an estimate ĥ (e.g. an element in ĥt|t) with an estimation

error h̃ � h− ĥ, so that h has the pdf CN (h; ĥ, σ2
h̃
), where σ2

h̃
is the variance

of the white zero-mean process h̃. An element in (5.2.1) can then be written

yt = stht + vt = stĥt + sth̃t + vt. (5.3.5)

Here, st is a diagonal element in Φt, i.e. a pilot, and vt is additive complex
Gaussian noise. The channel equalizer and detector then operate on the
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signal stĥt. Assuming that the pilots have mean power S, the experienced
effective SNR after the estimator is

SNReff =
Sσ2

ĥ

Sσ2
h̃

+ σ2
v

, (5.3.6)

where σ2
v is the disturbance noise variance and σ2

ĥ
is the (prior) variance of the

estimate ĥ. We have then assumed that the estimate h̃t is uncorrelated with
vt. See Section 7.2.3 for a further discussion on this subject. The effective
SNR should be compared to the SNR

γ � Sσ2
h/σ

2
v (5.3.7)

experienced when no channel estimation error is present, where σ2
h is the

variance of the channel coefficient h and assumed known. We demand that
the channel estimator must not decrease the effective SNR by more than
some factor c. We may, without loss of generality, assume that S = 1 and
σ2

v = 1. Assuming an optimal estimator so that σ2
h = σ2

ĥ
+ σ2

h̃
and seeking a

constraint on the NMSE, the following inequality on the NMSE ξ � σ2
h̃
/σ2

h

must hold:
σ2

ĥ

σ2
v + σ2

h̃

=
σ2

h − σ2
h̃

σ2
v + σ2

h̃

=
1− ξ

γ−1 + ξ
≥ cγ (5.3.8)

Rearranging the above gives us the lower acceptable value for the NMSE ξ:

ξ ≤ 1− c

1 + cγ
. (5.3.9)

Note that this expression has the asymptotes (1− c) for low SNR values and
γ−1(1− c)/c for high SNR values.

Particularly, if we can accept a decrease of the effective SNR of 3 dB
compared to the SNR γ, we set c = 1/2 and find the condition on ξ to be

ξ ≤ (2 + γ)−1 (5.3.10)

In this chapter we will for illustration accept a reduction of the effective SNR
of 3 dB. We therefore use the criterion (5.3.10) as performance limit. As a
good approximation, one may use the limit ξ ≤ γ−1 when γ ≥ 12 dB.

5.4 Experimental results

The BAs are tested for two different fading statistics (see Section 5.2) and
three different velocities: 5 km/h, 50 km/h, and 250 km/h. Perfect model
match is assumed, so that the model (5.2.2) of the fading statistics correctly
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represents the statistical properties of the real channel. We also assume sta-
tionary pilot transmission conditions (that is, static channel model matrices
except for the pilot matrix) in which transients from earlier conditions have
faded. As mentioned earlier, this would require a continuous pilot transmis-
sion (corresponding to persistent scheduling of payload data) from UEs over
uplinks. All of the above six conditions (two types of fading statistics times
three different velocities) are tested for each and every one of the six BAs,
giving a total of 36 scenarios.

The algorithms are tested over a range of SNRs3 and measured in terms of
the resulting NMSE. The total error contributed by the SNR and the NMSE
ultimately results in a bit error rate (BER) or a frame error rate (FER). For
a given decoding scheme, the ideal BER/FER curve is that produced when
NMSE=−∞ dB. When NMSE > 0, the BER/FER curve is then displaced
from the ideal curve. Using the criterion (5.3.10), this displacement is less
than 3 dB. Further, results in [77] and [76] suggest that the displacement
can be improved down to less than a mere 1 dB displacement when iterative
channel estimation (see Appendix 4.D) is used. Motivated by this, we use
(5.3.10) as criterion for acceptable channel estimation performance.

Results for the 36 scenarios that we have investigated are illustrated in
Figures 5.5–5.10. To give an overview of all the results, we summarize in

5 km/h, Jakes-like fading

250 km/h, rich fading
250 km/h, Jakes-like fading
50 km/h, rich fading
50 km/h, Jakes-like fading
5 km/h, rich fading

B-IFDMA 1x1

IFDMA

B-IFDMA 1x2

B-IFDMA 2x1

B-IFDMA 2x2

LFDMA

Figure 5.4: Summary of 36 combinations and block allocations, velocities, and
fading statistics. Dark grey indicates that none of the three channel estimators
suggested here meet the performance criterion. Light grey indicates that B-MMSE
does not meet the criterion. White indicates that both B-MMSE and smoothed
KF, but not necessarily non-smoothed KF, meet the criterion. Detailed results for
twelve combinations are presented in other figures, as indicated by the numbers
and letters.

Figure 5.4 which of the 36 scenarios that do not meet the performance limit
over the whole SNR range for any of the estimation methods, when certain
“hand-picked” pilot patterns are used (see below). Also, we indicate for which

3We here assume matched filter reception so that SNR=Es/N0, where Es is the symbol
energy and N0 is the power spectral density for the total noise [71].
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scenarios that the smoothed KF but not the B-MMSE filter will comply with
the NMSE criterion over the whole range of SNR values.

5.4.1 Impact of pilot pattern

Although the assumed pilot overhead is fixed to 1/12, it is not evident were
exactly the pilots should be placed in the time-frequency grid. We therefore
conduct exhaustive searches over all possible patterns in order to find the
optimal pattern for each BA. We have also hand-picked one pattern for each
BA that performs well in all scenarios. These patterns are illustrated i Fig-
ure 5.1. Exhaustive searches could not be performed for the last two BAs.
Instead, 100 random patterns were set to compete.

The channel estimation results are presented in Figures 5.5–5.10. The
performance for the best and worst pilot patterns for the respective estima-
tion methods are plotted, along with the hand-picked pattern. The main
conclusion here is that the choice of pilot pattern has a large impact on the
estimation performance. The patterns presented in Figure 5.1 have close to
optimal performance in all situations.

5.4.2 Impact of UE velocity and fading statistics

We examine how UE velocity and fading statistics affect channel estimation
performance. We find that KF estimation is generally superior to B-MMSE,
except for high velocities and rich fading, where smoothed KF and B-MMSE
have the same performance. It is also important to use smoothing when using
KF for the ‘harsher’ scenarios (50 km/h with rich fading, and 250 km/h).

5.4.3 Impact of block allocation choice

The choice of block allocation greatly impacts estimation performance. For
low velocities, all six BAs considered here meet the performance criterion
over the whole SNR range, although KF estimation needs to be used for
B-IFDMA 1x1. However at higher velocities, the performance for BAs using
small bins quickly deteriorates, especially in rich fading scenarios. Evidently,
the use of B-IFDMA 1x1 should be questioned in the studied scenario, and
IFDMA may need smoothed KF estimation, which has a very high numerical
complexity. Small bins may however be attractive when transmitting small
packets in situations when a low outage probability is more important than
the power efficiency of the transmission, or in the downlink when pilots from
adjacent users can be used. We also note that KF with smoothing must
be used for the 24-symbols-per-bin schedules at high velocities in order to
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meet the performance boundary, and this only works in Jakes-like fading
environments.

5.5 Conclusions

In this chapter we have investigated channel estimation for OFDMA based
resource allocation schemes. Within the framework of Block Interleaved Fre-
quency Division Multiple Access (B-IFDMA) we showed that channel esti-
mation can perform well for small time-frequency localized resources, here
called bins. Small bins are useful for robust frequency-diversity based trans-
mission of small packets. Combined with persistent scheduling, we find that
smoothed Kalman filtering estimation is generally superior to B-MMSE esti-
mation, except for high velocities and rich fading, where smoothed Kalman
filtering and B-MMSE filters have the same performance. With Kalman fil-
tering, bins as small as 22 channel symbols and two pilots can be used even
at high velocities if the fading statistics of the radio channel is favourable.
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(e) 250 km/h, Jakes-like fading
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Figure 5.5: Estimation performance for IFDMA at different velocities and with
different fading statistics. Simulations were carried out over every possible one-
pilots pattern. Worst and best performance curves are indicated by thin solid lines
for Kalman filtering (KF) with smoothing (blue, circles), KF without smoothing
(green, triangles), and B-MMSE (red, crosses). Thick dashed lines indicate per-
formance for the hand-picked pattern illustrated in Figure 5.1. However, for the
B-MMSE estimator, the hand-picked pattern is the one where the pilot is in the
middle of the bin, and not at the end. The solid line without markers is the
acceptance boundary for the criterion (5.3.10).
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(e) 250 km/h, Jakes-like fading
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Figure 5.6: Estimation performance for B-IFDMA 1x1-mode at different veloci-
ties and with different fading statistics. Simulations were carried out over every
possible one-pilots pattern. Worst and best performance curves are indicated by
thin solid lines for Kalman filtering (KF) with smoothing (blue, circles), KF with-
out smoothing (green, triangles), and B-MMSE (red, crosses). Thick dashed lines
indicate performance for the hand-picked pattern illustrated in Figure 5.1. The
solid line without markers is the acceptance boundary for the criterion (5.3.10).
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(e) 250 km/h, Jakes-like fading
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(f) 250 km/h, rich fading

Figure 5.7: Estimation performance for B-IFDMA 1x2-mode at different velocities
and with different fading statistics. Simulations were carried out over every possi-
ble two-pilots pattern. Worst and best performance curves are indicated by thin
solid lines for Kalman filtering (KF) with smoothing (blue, circles), KF without
smoothing (green, triangles), and B-MMSE (red, crosses). Thick dashed lines in-
dicate performance for the ‘opposite corners’ pattern illustrated in Figure 5.1. The
solid line without markers is the acceptance boundary for the criterion (5.3.10).



Chapter 5. A channel estimation case study 117

0 5 10 15

−20

−15

−10

−5

0

SNR[dB]

NM
SE

[d
B]

(a) 5 km/h, Jakes-like fading
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(d) 50 km/h, rich fading

0 5 10 15

−20

−15

−10

−5

0

SNR[dB]

NM
SE

[d
B]

(e) 250 km/h, Jakes-like fading
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(f) 250 km/h, rich fading

Figure 5.8: Estimation performance for B-IFDMA 2x1-mode at different velocities
and with different fading statistics. Simulations were carried out over every possi-
ble two-pilots pattern. Worst and best performance curves are indicated by thin
solid lines for Kalman filtering (KF) with smoothing (blue, circles), KF without
smoothing (green, triangles), and B-MMSE (red, crosses). Thick dashed lines in-
dicate performance for the ‘opposite corners’ pattern illustrated in Figure 5.1. The
solid line without markers is the acceptance boundary for the criterion (5.3.10).
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0 5 10 15

−20

−15

−10

−5

0

SNR[dB]

NM
SE

[d
B]

(b) 5 km/h, rich fading

0 5 10 15

−20

−15

−10

−5

0

SNR[dB]

NM
SE

[d
B]

(c) 50 km/h, Jakes-like fading

0 5 10 15

−20

−15

−10

−5

0

SNR[dB]

NM
SE

[d
B]
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(e) 250 km/h, Jakes-like fading
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Figure 5.9: Estimation performance for B-IFDMA 2x2-mode at different velocities
and with different fading statistics. Simulations were carried out over 100 randomly
picked pilot patterns. Worst and best performance curves are indicated by thin
solid lines for Kalman filtering (KF) with smoothing (blue, circles), KF without
smoothing (green, triangles), and B-MMSE (red, crosses). Thick dashed lines
indicate performance for the hand-picked pattern illustrated in Figure 5.1. The
solid line without markers is the acceptance boundary for the criterion (5.3.10).
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(a) 5 km/h, Jakes-like fading
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(e) 250 km/h, Jakes-like fading
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Figure 5.10: Estimation performance for LFDMA at different velocities and with
different fading statistics. Simulations were carried out over 100 randomly picked
pilot patterns. Worst and best performance curves are indicated by thin solid lines
for Kalman filtering (KF) with smoothing (blue, circles), KF without smoothing
(green, triangles), and B-MMSE (red, crosses). Thick dashed lines indicate perfor-
mance for the hand-picked pattern illustrated in Figure 5.1. The solid line without
markers is the acceptance boundary for the criterion (5.3.10).





Chapter 6
The OFDMA uplink design

Frequency-adaptive multiuser scheduling in OFDM utilizes the frequency-
selective small-scale fading to allocate subchannels with advantageous signal-
to-noise ratio (SNR) to each user. Due to channel time-variability and delays
of the transmission control loop, this will in general require channel predic-
tion. FDD (Frequency Division Duplex) multi-input transmissions, such as
uplinks with multiple users, pose the most challenging prediction problem:
all subchannels that may potentially be allocated must here be predicted for
all involved user equipments (UEs), based on pilots transmitted from all UEs.
This poses challenges with respect to prediction accuracy, estimator complex-
ity and pilot overhead. This chapter explores the design, performance and
complexity of Kalman predictors used for multi-user uplink prediction, in
the context of the EU WINNER project baseline design system. One conclu-
sion is that multi-user uplink prediction that is useful at vehicular velocities
in 4G systems operating at 3-5 GHz is indeed feasible, if very fast resource
allocation is implemented, so that short prediction horizons are adequate.
However, the channel predictability depends crucially on the local fading en-
vironment, so predictors should be based on models of the Doppler spectrum
for each terminal.

Although we here formulate the problem as a multiuser uplink problem,
the present investigation is also valid for multi-input downlinks in coordi-
nated multi-point (CoMP) scenarios, where several base stations transmit
simultaneously to one UE.

6.1 Introduction

The use of adaptive OFDMA on wide-band channels enables the allocation
of UEs to the frequency and time regions that are most advantageous for
them. A multiuser scheduler may allocate the transmission to/from each UE
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to appropriate frequency bands by utilizing the channel variations due to
the small-scale frequency selective fading. Channels to/from each UE will
in general vary independently. Substantial multiuser scheduling gains can
be attained if each of u UEs is allocated to the fraction 1/u of the time-
frequency regions having the highest SNR for that particular UE. Assume
that all of the u UEs experience equi-powered Rayleigh fading channels that
can be perfectly predicted and tracked by the receiver, and the scheduler
always allocates the resources to the UE having the best channel. Then, each
UE will on average experience an SNR of γ

∑u
i=1 i−1, where γ is the mean

SNR that a UE would experience were that UE alone in the system [32].
Additional (but smaller) gains are obtained by also using link adaptation
that is adjusted to each allocated subchannel.

Due to these potential gains, frequency-adaptive transmission in OFDMA
downlinks has been of interest in the research community, for example in the
European beyond-3G WINNER project [31]. OFDMA is used in uplinks in
the WiMAX system [42]1.

One complication in systems that use adaptive OFDMA is that for moving
terminals, measurements of the channel gain for a subchannel will quickly
become outdated. Figure 6.1 illustrates the variation of received power with
time and frequency for one particular UE and fading pattern.

Frequency-adaptive transmission for vehicular UEs would therefore re-
quire low latency control loops for the transmission and also efficient channel
prediction of the SNR at the instant of transmission. Designs for downlinks
up to 100 km/h at 2 GHz carrier have been investigated within the Swedish
Wireless IP project [81] and downlink designs targeted at up to 70 km/h at
5 GHz have been proposed and evaluated within the WINNER project [66],
[82].

For FDD downlinks and TDD (time division duplex) uplinks and down-
links, channel prediction can be based on downlink pilots that are transmit-
ted by the base station to all terminals within a sector or beam. (In TDD,
prediction of the downlink channel gains can be used also for the uplink
gains, due to the channel reciprocity.) Channel predictors at each terminal
may then predict the frequency selective channel over a band of interest [4],
[60]. Suitably compressed messages are reported to the scheduler at the base
station, so that the scheduler may allocate the sub-bands among the UEs.

The potential multiuser scheduling gain is as large in FDD uplinks as in
the cases outlined above, but the channel prediction problem becomes much
harder: FDD uplinks cannot be predicted based on downlink pilots, because

1In the 3GPP LTE standard [80],[33], OFDMA is used in downlinks, but not in uplinks.
There, larger contiguous frequency blocks are allocated to each user. This scheme has been
selected because it enables the use of signalling waveforms with low envelope variations,
which facilitate the design of low-cost terminals with high power efficiency.
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Figure 6.1: Time-frequency representation of an estimated channel obtained from
measurement data on a 6.4 MHz channel at a 1880 MHz carrier. White colour
denotes high power whereas dark colour denotes low power. The dynamic range
and the speed of the mobile is approximately 40 dB and 50 km/h, respectively.
The coherence bandwidth is 0.6 MHz in this example. This particular channel was
studied in [4].

uplinks and downlinks work at significantly different carrier frequencies. Pre-
dictors at the base station will have to predict the channels from all UEs that
compete for a set of transmission resources. To support this prediction, all of
these UEs would have to send special-purpose pilots within all resources of
interest, at an appropriate channel sampling rate2. The need for such special
uplink pilots leads to two problems that become severe when the number of
competing UEs is large:

1. If uplink pilots are transmitted in sub-locations that are exclusively
allotted to each UE, then the overhead of earmarked pilot sub-locations
relative to payload could become unacceptably large.

2. If u UEs compete for a set of resources, then each of them will on
average obtain only u−1 of the resources but will still have to transmit
pilots in all of them. For large values of u, this pilot power overhead
will overshadow the multiuser scheduling throughput gains.

The multiuser scheduling gains increase significantly with u for small values

2If only the pilots that are embedded in uplink payload transmissions are used, then
the channel sampling would depend on the availability and scheduling of the uplink trans-
missions. Extrapolation to other frequency bands beyond the correlation bandwidth could
not be performed. Also, the sampling in any given band could not be relied upon to have
sufficient rate to support a reliable prediction of the channel in that band.
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of u but slower when u increases3. This makes it possible to handle both
of the problems outlined above by partitioning the total bandwidth into a
number of competition bands, each with a limited number of competitors
(typically u = 8 or less). The competition bands should be composed of
frequency resources that are well spread out over the uplink bandwidth, to
sample the available frequency selectivity.

Our problem here will therefore be to design and assess channel predictors
that work on uplink pilots that are transmitted from u UEs, within a subset
of OFDM subchannels that constitute a competition band.

We will discuss various design aspects for Kalman-based schemes that
produce MMSE estimates of the complex frequency-domain channel gains.
Compared to Wiener filtering [30], [83], Kalman estimators provide better
initial transient accuracy and are the optimal estimators for linear signal
models and Gaussian noise. They make optimal use of the previous time his-
tory of measured fading channels, using in effect a time window that grows
with decreasing vehicle velocity (increasing coherence time of the channel). In
contrast, Wiener-based OFDM channel estimators are mostly implemented
using the pilots within a time-frequency window of fixed size. Kalman pre-
dictors also provide the prediction covariances. This uncertainty information
can be used by the scheduler and by the link adaptation, to e.g. attain a
target bit error rate at a given prediction variance [64].

The Kalman predictors can be implemented in the time domain, by track-
ing impulse response coefficients and then transforming them to predicted
frequency domain channels. Alternatively, they can be implemented in the
frequency domain. Details regarding these different kind of modelling is
found in Chapter 4. The performances of both these schemes have been eval-
uated, and are identical. The computational complexity of the two schemes
will however differ in general, see Sections 4.3 and 4.4. We here show the
results from the frequency domain modelling implementation.

Initial results on Kalman-based predictors for FDD uplinks were previ-
ously reported in [84] and [66]. We will here discuss the effects of using
different kinds of pilot sequences and examine the impact of channel fading
statistics. The computational complexity, which determines the feasibility in
fast adaptation feedback loops, will also be discussed.

6.2 System model

Prediction performance will be evaluated with respect to the baseline system
design of the WINNER FDD mode [85]. This design has a system sampling

3When using proportional fair scheduling, the multiuser scheduling gain scales as
log(log(u)) with the number of active users u.
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period of 12.5 ns, giving a FFT bandwidth of 80 MHz. The signal bands are
45 MHz in both uplinks and downlinks. Each OFDM symbol is 2048 samples
plus an additional 256 samples for the cyclic prefix. The subchannel width
is 39.06 kHz and the OFDM symbol + guard duration is 28.8 μs.

The time-frequency radio resource is divided into blocks (here denoted
chunks) of 8 subchannels (312.5 kHz) by 12 OFDM symbols (345.6 μs). A
time duration of a chunk, 345.6 μs, is denoted a slot. A chunk constitutes the
unit for frequency-adaptive resource allocation. The chunk size is selected to
make the channel moderately flat within chunks. Uplink pilot symbols known
to the the receiver facilitate the prediction. They are here assumed located
on the first of the 12 OFDM symbols and no payload data is transmitted
on this symbol, meaning that the pilot overhead is 1/12. We here assume
a full-duplex FDD uplink, so uplink pilots will be transmitted within each
slot.

To prepare for frequency adaptive uplink transmission, the UE is allo-
cated a competition band and begins to send pilots in this band. Based
on these pilots, the predictor estimates the parameters of an autoregressive
model of a predetermined order k (ARk) so that it well describes the tempo-
ral correlation (Doppler spectrum) of the channel. The frequency correlation
of the fading is also estimated. The model parameters (the AR coefficients
and the frequency correlation) need to be estimated on exclusive pilots trans-
mitted from a UE at a time, see Chapter 8. However, as will be demonstrated
in Chapter 8, model parameter estimation only has to take place on a slow
time scale (order of seconds). In this chapter, we make the assumption that
AR parameters have been found that fully comply with the behaviour of the
channels.

Channel predictions are then produced for this UE’s channel. When a
packet for uplink transmission arrives, the UE sends a transmission request
during slot j. The scheduler may grant the request and sends the allocation
information over a downlink control channel during slot j +1. The transmis-
sion then commences over the uplink in slot j + 2. The required prediction
horizon is two slots, or 0.7 ms, or L = 2 pilot samples. This tight control
loop requires an update of the channel prediction by the end of slot j, that
is based on pilots up until those transmitted at the beginning of slot j. The
prediction, the scheduling, and the downlink control transmission together
have to be executed within less than 1.5 slot durations (0.5 ms).4

We construct a linear filter that uses measurements of w parallel pilot-

4The feasibility of such a low control loop latency was studied within the WINNER
project, to investigate the limits of performance of adaptive OFDMA transmission. The
control of scheduled transmissions in systems that work according to the 3GPP LTE
Release 8 standard is much longer, 5-6 ms. The attainable vehicular velocities in LTE
would be correspondingly lower, at equal carrier wavelengths.
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bearing subchannels. Details regarding this can be found in Chapter 4. Here
we present a quick overview of the modelling technique. The fading channel
coefficients of u simultaneous UEs5 are modelled by (see Section 4.2.4 in the
case of subchannel modelling)

xt+1 = Fxt + Gut,

ht = Hxt,
(6.2.1)

where

F = diagu(diagw(X)),

G = diagu(diagw(Y)),

H = diagu(diagw(Z)).

(6.2.2)

Here, diagn(·) denotes a block-diagonal matrix with n blocks, and ht is a
vector holding the uw fading channel coefficients. Each triplet {X,Y,Z}
models the fading statistics of one channel coefficient with an autoregressive
model of order 4. The four poles of this model are so chosen as to represent an
estimated Doppler spectrum. They are in general different for different users.
Here we use the same model for all channel coefficients across all terminals.
The shape of the Doppler spectrum depends on the fading environment. We
here assume that the Doppler spectrum describes the fading behaviour of the
channel perfectly.

The pilots {φ1,k,t, . . . , φw,k,t} for each UE k at time t are represented by
a time-variant regressor matrix Φt,

Φt =

⎛
⎜⎝φ1,1,t φ1,u,t

. . . · · · . . .

φw,1,t φw,u,t

⎞
⎟⎠ . (6.2.3)

The measurement vector yt of the w received subchannels at the pilot sub-
locations is then modelled by

yt = Φtht + vt. (6.2.4)

Here, vt represents noise and interference. Note that, unless we set most
pilot symbols to zero, the received signal at a subchannel will be affected by
the channels from multiple UEs.

5Channels for multiple transmit antennas/spatial streams from one UE may be mod-
elled in the same way as channels from different UEs are modelled, with the difference
that in that case, it may suffice to estimate one set of model parameters, since all streams
from one and the same UE will feature the same channel statistics.
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The correlation between the channel coefficients is expressed by the pro-
cess noise covariance matrix Q = ‖ut‖2, while R = ‖vt‖2 is the noise covari-
ance matrix. Here, we will assume that the noise has zero-mean and unit
variance on each subchannel and is uncorrelated between subchannels, so
that R = I. Theorem 4.2.1 describes how to appropriately scale the matrix
Q.

With the state and measurement equations (6.2.1) and (6.2.4), optimal
inferences about the channel coefficients ht are obtained by the Kalman equa-
tions, see Section 4.3. The Kalman equations produce filtered state estimates
x̂t|t based on all measurements up to and including time t. The L-step pre-

diction estimate of ht is then obtained from x̂t|t by ĥt+L|t = HFLx̂t|t.

The attainable prediction accuracy will depend on the prediction horizon
scaled in carrier wavelengths, l, which in turn depends on the UE velocity
v, the prediction horizon Ltp expressed in seconds, where tp is the sampling
period of the filter, and the carrier wavelength λ, via the relation

l = vLtp/λ. (6.2.5)

In the assumed WINNER baseline design, the sampling period tp equals
the slot duration (345.6 μs), λ = 8.1 cm (3.7 GHz uplink carrier), and the
prediction range is L = 2 steps.

The results in this chapter are evaluated on two channel models: A flat
(non-frequency selective) channel, and a frequency selective non-line-of sight
channel for urban environments (WINNER II C2 NLOS channel) with power
delay profile given in Section 2.3.2.

When not explicitly stated otherwise, we set the velocity of the terminals
to 50 km/h, the SNR to 12 dB, and the filter width w to 8 subchannels
(one chunk width). The prediction horizon is set to two steps (slots). Per-
formance is expressed in terms of the mean value of the normalized mean
square error (NMSE), see Equation (4.3.14), averaged over all uw channel
coefficients. These coefficients correspond to pilot sub-locations which are
irrelevant for payload data detection. When the payload is to be detected,
channel estimates need to be interpolated (and possibly extrapolated) to
payload sub-locations. It can be shown that channel estimates acquired for
these sub-locations have approximately the same quality as the estimates
produced for the pilot sub-locations, see Appendix 6.A.1. Motivated by this
fact, we use NMSE values for pilot sub-locations as a performance metric in
this study.
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Figure 6.2: NMSE versus SNR for one UE tracking w parallel subchannels, where
w = {1, 2, 4, 8} (upper to lower curves). The maximum normalized Doppler fre-
quency is fDtp = 0.06. Solid lines represent a flat fading channel. Dashed lines
represent the frequency selective WINNER II C2 NLOS channel. Gridlines are
spaced by 3 dB to elucidate the fact that a doubling of the filter width leads to a
3 dB performance increase for flat fading channels. The dash-dotted line indicates
the filter estimation performance boundary (5.3.10) from Chapter 5.

6.3 Channel prediction for multiple users

In this section we discuss how to predict multiple fading channels based on a
noisy superposition of measurements of the channels. As a prerequisite, we
begin by studying some basic properties of an optimal filter taking parallel
subchannels into account.

6.3.1 Filter width and Doppler frequency

We study how the choice of filter width w affects estimation performance.
Since the noise is white by assumption, one expects that for flat fading chan-
nels, a doubling of the filter width would lead to a NMSE decrease of approx-
imately 3 dB. This is indeed the result as seen in Figure 6.2, which illustrates
how the NMSE performance for channel estimation (note that no prediction
is used here) changes when the filter width is doubled. We use a Doppler
spectrum that is approximately flat in the frequency range [−fD, fD], where
fD is the maximum Doppler frequency. Results for both flat fading and
frequency selective channels are presented. Evidently, the doubling gain is
somewhat less than 3 dB for frequency selective channels. The general rule is
that the denser the pilots are packed frequency-wise, and the less frequency
selective the channel is, the closer to 3 dB will the doubling gain be.
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Figure 6.3: NMSE versus SNR for one UE tracking a single subchannel
subjected to a fading channel with normalized Doppler frequency fDtp =
{0.0075, 0.015, 0.03, 0.06, 0.12}, which correspond approximately to velocities
{6, 13, 25, 50, 100} km/h for the WINNER system parameters. For completeness,
the dash-dotted line indicates the filter estimation performance boundary (5.3.10)
from Chapter 5.

A similar result is achieved for the time domain when the normalized
Doppler frequency changes. See Figure 6.3, which illustrates how the NMSE
performance for channel estimation improves when the Doppler frequency
is halved. Analogous to the doubling of filter width, we see a performance
increase of a little less than 3 dB when the Doppler frequency is halved.
What this says is that a low velocity and/or a low carrier frequency will be
beneficial to channel estimation performance. In the same way will a dense
pilot spacing influence estimation performance in a positive way. Note that
the smaller the Doppler frequency, the closer to 3 dB will the performance
increase be when the Doppler frequency is halved.

The velocity and the carrier frequency are parameters that a communi-
cations system engineer rarely can change at will. The duration between
pilot bearing OFDM symbols, tp, is however a design parameter whose value
should be taken into careful consideration when designing a system, as should
the filter width w. Note however that the choices of tp and w will influence
the numerical complexity of the Kalman filter (KF). The complexity of the
KF increases linearly with tp but cubically with w.
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6.4 Pilot strategy

The filter width w, i.e. the number of simultaneous subchannels to be tracked,
which is the same as the dimensionality of the measurements yt, may be ad-
justed for performance/complexity tradeoff. A competition band that com-
prises c predicted subchannels will then require the use of c/w Kalman pre-
dictors run in parallel, assuming that c/w is an integer.

The proportion of sub-symbols that are pilots, i.e. the pilot overhead,
is typically somewhere between 1/20 and 1/10 for each transmit antenna,
see for example Figure 2.5. In a multi-user setting, if each UE were assigned
exclusive pilots, the grid of sub-symbols could be dominated by pilots already
when as few as five or six UEs share the bandwidth. This is unacceptable.
We therefore allocate a small subset of sub-locations for pilots, irrespective of
how many UEs are taking part in the competition for the channel. If multiple
UEs are present, then they somehow have to share the space allotted to pilots.

The pilot matrix {Φt} is the design parameter that tells how this should
be done. Should the pilot sub-symbols transmitted by each UE be placed
on all w subchannels that are tracked, hence making the pilots from the
different UEs overlap? Or should we instead use dedicated pilots, so that each
UE concentrates its pilot energy to one single subchannel, not transmitting
anything on the remaining w − 1 subchannels?

Assuming that the number of UEs u in the competition band is less or
equal to the number of subchannels w, we may represent the pilots used by
w simultaneous UEs by a w× u matrix Ψ, where each column in Ψ contains
the complex-valued time-frequency pilots for one UE:

Ψ =

⎛
⎜⎝φ1,1 · · · φ1,u

...
...

φw,1 · · · φw,u

⎞
⎟⎠ , (6.4.1)

where φi,j is the pilot symbol transmitted on subchannel i for UE j. For
brevity, we have excluded time indices. The matrix Ψ is a “compacted”
version of the pilot matrix Φ (6.2.3). Dedicated pilots for w UEs are here
simply obtained through Ψ =

√
wIw, where I denotes the identity matrix.

Overlapping pilots are in this chapter constructed from Hadamard matrices.

Although complex Hadamard matrices are possible to find, they have
no advantage over real matrices in the present context. We will here use
Sylvester’s construction which yields pilot symbols of either −1 or 1, i.e.
BPSK symbols. Hence we construct a 2n × 2n Hadamard matrix by setting
U0 = 1 and iterating

Un+1 =

(
Un Un

Un −Un

)
. (6.4.2)
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To get w overlapping pilot sequences, we set Ψ = Ulog2 w. Note that in the
dedicated pilots case and the overlapping pilots case alike, we choose pilot
symbols so that the total pilot energy per user over the filter width is w.

With pilot sequences of length w, it is not possible to construct more than
w real or complex-valued orthogonal pilot sequences. If the number of UEs is
larger than the filter width w, we therefore need to construct additional non-
orthogonal pilot sequences from the orthogonal set Ψ. There is no general
scheme for how to do this optimally. In this chapter, we construct 16 pilot
sequences from 8 pilots through a linear mapping. The 16 pilot sequences are
here given by the columns of ΨT, where the matrix T that maps 8 orthogonal
pilots onto 16 non-orthogonal pilots is

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · · · · · α 1
2

1
2

1
2

1
2

1
2

1
2

1
2

· 1 · · · · · · α · 1
2
· 1

2
· 1

2
·

· · 1 · · · · · α 1
2
· · 1

2
1
2
· ·

· · · 1 · · · · α · · 1
2

1
2
· · 1

2

· · · · 1 · · · α 1
2

1
2

1
2
· · · ·

· · · · · 1 · · α · 1
2
· · 1

2
· 1

2

· · · · · · 1 · α 1
2
· · · · 1

2
1
2

· · · · · · · 1 α · · 1
2
· 1

2
1
2
·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.4.3)

where (·) indicates a zero element, and α = 1/
√

8.

6.4.1 Overlapping versus dedicated pilots

In a general FDD uplink wireless scenario, the channels between UEs and
a base station will be frequency selective. The base station has to estimate
these channels to good precision in order to be able to schedule resources
efficiently. On the one hand, the use of overlapping pilots will provide the
base station with information of the entire filter bandwidth for all UEs si-
multaneously. On the other hand, the fact that UEs send pilots at the same
sub-locations will degrade performance as compared to the scenario where
each UE has dedicated sub-locations for their pilots. Conversely, the use of
dedicated pilots will give poor information about how the channel varies over
different subchannels.

We compare the performance of overlapping pilots against the perfor-
mance of dedicated pilots. Figures 6.4 and 6.5 show NMSE versus number
of UEs u for the respective choices of pilots. The filter width is set to w = 8,
and the Doppler spectrum is the flat Doppler spectrum used in Section 6.3.1.
Here we use a normalized maximum Doppler frequency of 0.06, correspond-
ing e.g. to a velocity of 50 km/h at a carrier frequency of 3.7 GHz when
the WINNER system parameters are used. Results for both flat-fading and
frequency selective channels are presented.
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First, we turn our attention to the case u ≤ w. In the flat-fading case, all
subchannels fade in unison and the pilots for UEs 1 through 8 are completely
orthogonal. In a noise-free case, the w measurements provided at time t by
equation (6.2.4) would then provide a solvable linear system of equations with
respect to the u ≤ w different channel coefficients. This holds regardless of
whether we use overlapping or dedicated pilots. For example, when u = w,
we would have yt = Ψh̄t, where h̄t is a w-vector whose i:th element is the
(single) channel coefficient for user equipment i. Since Ψ has full column
rank when u ≤ w, the system can be solved with respect to h̄t.

When the channels are flat fading we therefore have the result that

• the choice of pilots is irrelevant as long as the pilots are orthogonal,
and

• the performance does not degrade with an increasing number of UEs u
as long as u ≤ w.

The situation is different when the channels are frequency selective, i.e. when
the WINNER II C2 NLOS channel model is used and the frequency spacing
between pilot subchannels is 39.06 kHz. The importance of measuring over
the entire filter bandwidth is evident when we compare the dashed lines in
Figures 6.4 and 6.5 for UEs 1–8 and find the overlapping pilots to perform
considerably better than the dedicated pilots. For the particular working
point SNR=12 dB studied here, the gain is about 2 dB for one UE, and
decreases when the number of simultaneous UEs increases.

The curves merge at the point u = 8, indicating that the choice of pilots is
unimportant when the orthogonal set has been filled. This conclusion should
however be drawn with care, because in the dedicated case, the NMSE val-
ues will vary considerably, from high (on peripheral subchannels), to low (on
middle subchannels). When adaptive modulation is used, the modulation
format is assumed to be chosen per resource block. One would therefore pre-
fer as even a distribution of the NMSE values as possible, which is provided
by the overlapping pilots.

The reason for the performances for dedicated pilots (dashed) actually
increasing with u in Figure 6.4 is due to the way the pilot subchannels have
been allocated to UEs in this experiment. The first UE here puts pilot energy
on the first subchannel, which is on the border of the filter bandwidth, while
UEs 4 and 5 invest their pilots in the middle of the bandwidth. The latter is
the better tactic when we rate performance based on the mean value of the
NMSE over all subchannels. This is the reason for the performance increase
when UEs 2, 3 and so on are added to the system.

This illustrates that if dedicated (and time static) pilots are to be used,
then one should assign one of the middle subchannels to the first UE to enter
the system, and only assign border subchannels when necessary.
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Figure 6.4: NMSE performance, averaged over the eight subchannels, versus num-
ber of UEs for two-step prediction at an SNR of 10 dB. Results for flat-fading
(solid, circles) and frequency selective (dashed, squares) are presented. Dedicated
and time-static pilots where used. The normalized Doppler frequency is 0.06, so
that two-step prediction corresponds to 0.12 wavelengths, and the filter width is
w = 8. The performance results are the same for all UEs.

� � � � � � � �

�

�

�

�
�
�
�
�

� � � �
�
�
� �

�

�

�

�
�
�
�
�

�12

�10

�8

�6

�4

�2

0
2 4 6 8 10 12 14 16

N
M

SE
�d

B
�

Number of UEs

Figure 6.5: NMSE performance, averaged over the eight subchannels, versus num-
ber of UEs for two-step prediction at an SNR of 10 dB. Results for flat-fading (solid,
circles) and frequency selective (dashed, squares) are presented. Overlapping and
time-static pilots where used. The normalized Doppler frequency is 0.06, so that
two-step prediction corresponds to 0.12 wavelengths, and the filter width is w = 8.
The performance results are the same for all UEs.
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When the number of UEs u to share a certain bandwidth is larger than
the corresponding filter width w, it is not possible to find a set of u orthogonal
pilots. As presented in Section 6.4, we then construct new pilots from the
original set of w orthogonal pilots by a linear mapping. Restudying Figures
6.4 and 6.5 but now turning our attention to the case u > w, we note two
facts. One is that the performance is unaffected by the choice of dedicated
or overlapping pilots. The other fact is that the performance drop when we
go from orthogonal to non-orthogonal pilots (u = 8 to u = 9) is considerable.
It can be shown (see Appendix 6.A.2) that when the number of UEs u is less
than or equal to the filter width w and all UEs have the same SNR γ and
independent fading channels, then the filter estimation NMSE per UE, ξu≤w,
is

ξu≤w = (1 + wγ)−1. (6.4.4)

When the number of UEs u is w + 1, where w is the filter width and all UEs
have the same SNR γ and independent channels, the filter estimation NMSE
per UE, ξu=w+1, is

ξu=w+1 =
1 + γ

1 + (w + 1)γ
. (6.4.5)

6.4.2 Time-varying pilots

The performance drop from (6.4.4) to (6.4.5) as u ≥ w can be avoided by
providing the filter with more information about the time variability of the
channels. In the case u ≤ w, we have seen that the prediction performance
increases if we spread out the pilot energy and let the pilots vary over the
filter’s frequency band. In the same manner we may design the pilots to make
optimal use of previous channel samples. In the case of noiseless, frequency-
selective but time-invariant channels (i.e. immobile terminals), we obtain a
linear system of equations from the most recent w measurements⎛

⎜⎝ yt
...

yt−w+1

⎞
⎟⎠ =

⎛
⎜⎝ Φ1,t · · · Φu,t

...
...

...
Φ1,t−w+1 · · · Φu,t−w+1

⎞
⎟⎠

︸ ︷︷ ︸
A

h (6.4.6)

where Φi,t is the diagonal pilot matrix that holds the pilot sequence for UE
i at time t, and h holds the uw time-static channel coefficients. If the pilot
sequences contained in the diagonal matrices {Φi,j} vary over time so that A
obtains full rank uw, then the system (6.4.6) becomes solvable with respect
to the uw unknowns in h. One would expect that time-varying pilots have
the potential of improving the estimation also for time-varying channels and
noisy measurements. Below, we study the utility of using time-varying pilots.
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In Section 4.3.2, it was proved that when the channel models are static
and the pilots vary periodically over time, then the KF will converge to a
periodic filter. This property has a positive impact on the complexity of
the predictor. We shall therefore consider periodic pilot sequences, which we
denote cyclic pilots, and we here consider the specific case w = 8 and u = 16.

For dedicated pilots, cyclic pilots for UEs 1–8 are produced by rotating
the original pilot matrix

√
8I8 one step to the left every time step, hence

producing a period of eight time steps in the pilot cycle. The pilot sequences
for UEs 9–16 are set as those for UEs 1–8, but with signs that alternate over
time, so that the total 8-by-16 pilot matrix is

Ψt =
√

8
[
rott mod 8{I8} (−1)trott mod 8{I8}

]
, (6.4.7)

where roti{A} is a cyclic rotation of the columns of A i steps to the left, and
j mod 8 is the remainder of division of j by 8.

Time varying overlapping pilots are once again constructed from Hadamard
matrices. With u = 16 UEs, a 16-by-16 Hadamard matrix is constructed ac-
cording to (6.4.2). With w = 8, the rows of this matrix are then partitioned
into two sections. The first eight rows give the 16 pilot sequences for the
first time step in the pilot cycle, and the last eight rows describe the second
and last time step in the cycle. For other values of u and/or w, the matrix
would be partitioned into u/w parts (assuming u/w is an integer), so that
the pilot cycle has a period of u/w. Expression (6.4.8) shows the partitioning
of a 16-by-16 Hadamard matrix into a period of 2. Note that this method of
producing overlapping cyclic pilots results in the first w UEs actually having
static pilots.⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t = 0, 2, . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1

t = 1, 3, . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1

1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1

1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.4.8)
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Figure 6.6: NMSE performance, averaged over the eight subchannels, versus num-
ber of UEs for two-step prediction at an SNR of 10 dB. Results for flat-fading (solid,
circles) and frequency selective (dashed, squares) are presented. Dedicated pilots
that vary over time with period 8 where used. The normalized Doppler frequency
is 0.06, so that two-step prediction corresponds to 0.12 wavelengths, and the pilot
cycle period corresponds to 0.48 wavelengths. The filter width is w = 8. The
performance results are the same for all UEs.

The impact of using cyclic pilots is studied in Figures 6.6 and 6.7. Again,
we use the flat Doppler spectrum from Section 6.3.1, with a normalized max-
imum Doppler frequency of 0.06. Results for both flat-fading and frequency
selective channels (WINNER II C2 NLOS) are presented. When the number
of simultaneous UEs u is less or equal to eight, the only improvement is an
averaging of the performance for the dedicated pilots as compared to the case
when static pilot positions were used (Figure 6.4).

When u ≥ 9 the improvement is more dramatic. The steep performance
drop at u = 9 is now gone. Whereas the performance for flat fading channels
dropped by about 8 dB from u = 8 to u = 16 when static pilots where used,
cyclic pilots reduce this decrease in prediction performance to a mere 2 dB or
less. Evidently, the use of cyclic pilots is highly important to maintain a high
estimation performance when the number of UEs competing for a frequency
band is larger than the bandwidth w.

The number of orthogonal cyclic pilot sequences that can be used is ulti-
mately dictated by the size of a time-frequency region over which the channel
is essentially static. As stated in Section 2.3.1, this size is usually a few thou-
sand sub-locations and is approximately given by (TmBd)

−1, where Tm is the
channel’s multipath spread and Bd is the Doppler spread of the channel.
Even if only one part in twenty of all sub-locations are allotted to pilots,
and even if Tm and Bd are high, cyclic pilots can provide orthogonal pilot
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Figure 6.7: NMSE performance, averaged over the eight subchannels, versus num-
ber of UEs for two-step prediction at an SNR of 10 dB. Results for flat-fading (solid,
circles) and frequency selective (dashed, squares) are presented. Overlapping pilots
that vary over time with period 2 where used. The normalized Doppler frequency
is 0.06, so that two-step prediction as well as the pilot cycle period correspond to
0.12 wavelengths. The filter width is w = 8. The performance results are the same
for all UEs.

sequences for multiple UEs in most situations.

Note that (6.4.5) can be used as an upper bound on performance when
the number of competing UEs is larger than what cyclic pilots can support
with preserved orthogonality between UEs. If the time-frequency region over
which the channel is essentially static holds five pilot sub-symbols, but six
equally strong UEs compete, then their respective filter estimate NMSE per-
formances are upper bounded by (6.4.5) with w = 5.

6.5 The impact of Doppler spectra on chan-

nel prediction

So far in this chapter, we have assumed a prediction range of L = 2 time
steps, corresponding to 0.7 ms, or 0.12 wavelengths at 50 km/h and 3.7 GHz
carrier frequency. We have also assumed that the temporal fading behaviour
of the channel is described by a flat Doppler spectrum. This makes channel
prediction inherently hard: Since the Doppler spectrum does not exhibit any
strong frequency components, the fading channel data series do not contain
distinct sinusoids that can easily be extrapolated into the future. We now
turn to study how the prediction range and the Doppler spectrum affect
prediction performance.



138 6.5. The impact of Doppler spectra on channel prediction

6.5.1 Criterion

It was found in [63] and [64] that when the prediction NMSE is below -10 dB,
then link adaptation and/or scheduling can be successfully used for that re-
source. The performance degradation due to prediction errors is then rela-
tively small. This result holds for uncoded systems. When small code blocks
are used, it was found that somewhat higher prediction NMSEs can be ac-
cepted. In [82], a performance boundary of 0.15≈8 dB was used. When
evaluating prediction performance, we will choose the lower limit and accept
a maximum NMSE of -10 dB. Note that, unlike the performance boundary
for channel estimation given in (5.3.10) in Chapter 5, the prediction per-
formance bound does not depend on the SNR. Also, the limit -10 dB is an
acceptable NMSE level for link adaptation. In other applications for channel
prediction, e.g. to decide whether or not to use spatial multiplexing, this
limit may not be appropriate.

6.5.2 Studies on different Doppler spectra

In Figures 6.8–6.10, we examine the prediction performance for a number
of SNRs and channel properties. Four simultaneous UEs with equal average
SNR and orthogonal overlapping and static pilot sequences were used. The
filter width was w = 4. Results for three different Doppler spectra are given.
In each figure, three pairs of curves are plotted. The pairs illustrate, in
descending order of NMSE level, prediction performance when the SNR, the
same for all UEs, is 6, 12, and 18 dB, respectively. Results are shown for flat
fading channels (lower curve in each pair), and frequency selective channels
(upper curves).

As is clear from the figures, favourable fading statistics are crucial for
good prediction performance. We investigate four cases. The prediction
range L = 2 set previously corresponds to Ltpvfc/c0=0.12 wavelengths at
velocity v = 50 km/h, pilot spacing tp = 345.6 ms, and carrier frequency
fc = 3.7 GHz. With the flat Doppler spectrum (Figure 6.8) that has been
used throughout the chapter so far, the performance criterion is just met at
12 dB but not at 6 dB. However, when the fading channel conforms to a
Jakes-like Doppler spectrum (Figure 6.9), all SNR values meet the criterion
at the prescribed prediction range.

For a flat Doppler spectrum, prediction at the -10 dB NMSE accuracy
level is possible 0.08–0.15 wavelengths ahead. For a Jakes-like oscillatory
channel, the attainable horizons are longer, 0.14–0.27 wavelengths, in the
same SNR range 6–18 dB. These results can be compared to the case of
just extrapolating the present (noisy) sample as prediction. The attainable
horizon is then around 0.05 wavelengths, see e.g. Figure 3.7 in [66].
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Figure 6.8: Prediction NMSE performance versus prediction range when the chan-
nel’s Doppler spectrum is described by the inset picture, which is here given by
a flat AR4 model. The maximum normalized Doppler frequency is ≈ 0.06. The
curves correspond, in pairs, to SNR levels of 6, 12, and 18 dB, respectively. In
each pair, the dashed and solid curve shows the NMSE performance for frequency
selective and flat fading channels, respectively.
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Figure 6.9: Prediction NMSE performance versus prediction range when the chan-
nel’s Doppler spectrum is described by the inset picture, which is here given by
a Jakes-like AR4 model. The maximum normalized Doppler frequency is ≈ 0.06.
The curves correspond, in pairs, to SNR levels of 6, 12, and 18 dB, respectively. In
each pair, the dashed and solid curve shows the NMSE performance for frequency
selective and flat fading channels, respectively.
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Figure 6.10: Prediction NMSE performance versus prediction range when the
channel’s Doppler spectrum is described by the inset picture, which is here given by
an AR1 model with its pole very close to the unit circle. The maximum normalized
Doppler frequency is ≈ 0.06. The curves correspond, in pairs, to SNR levels of 6,
12, and 18 dB, respectively. In each pair, the dashed and solid curve shows the
NMSE performance for frequency selective and flat fading channels, respectively.

We also illustrate how the prediction performance is improved even fur-
ther when the Doppler spectrum contains a single strong frequency com-
ponent (Figure 6.10). This is the case when there is line-of-sight to the
transmitter, or when a single strong reflector is present.

Studying Figures 6.8–6.10, it is clear that the SNR has less impact on
prediction performance than the Doppler spectrum. Even less essential to
prediction performance is the frequency selectivity of the channel; only at
very small prediction ranges does it matter whether the channel is frequency
selective or not. To conclude, the fading statistics is the most crucial compo-
nent that dictates prediction performance. Accurate modelling of the fading
behaviour is therefore very important.

It was shown in Section 6.4.2 that cyclic pilots can greatly improve pre-
diction performance when the number of UEs u competing in a competition
band exceeds the filter width w. When studying prediction performance as a
function of prediction range, we could expect to see an improved prediction
performance from using cyclic pilots also when u ≤ w, but this turns out
not to be the case; from studying Figures 6.8–6.10, we can see that when
u ≤ w, cyclic pilots have a very limited impact on prediction performance as
the prediction range increases. Since here u = w, the prediction performance
can never exceed that achieved for flat fading channels (with orthogonal pi-
lots), even if the pilots are allowed to vary over time. As the prediction range
increases, the gaps close between the curves for frequency selective channels
and the corresponding curves for flat fading channel, implying that the best
possible gain that could ever be achieved by using cyclic pilots is very lim-



Chapter 6. The OFDMA uplink design 141

ited for the case u ≤ w. However, it should again be emphasized that the
technique of using cyclic pilots is crucial for high UE loads, u > w.

6.6 Numerical complexity

For efficient link utilisation, several UEs will compete for the radio resource in
a specific competition band. To cover a competition band that contains c pre-
dicted subchannels, �w0/w� KFs are run in parallel, where �x� is x rounded
to the nearest larger integer. Each of these filters has a numerical complex-
ity given by (4.4.1). Assuming that one complex operation corresponds to
four real operations, the solid lines in Figure 6.11 display the number of real
operations required per filter update versus number of UEs for w0 = 160
predicted subchannels, for designs with w = 4 or w = 8. We have then as-
sumed that u = 4 UEs compete for the resources. For each of these UEs, the
fading channel is modelled using subchannel modelling according to Chapter
4, with model order k = 4. The total number of states in the channels’ state
space model is n = uwk. The prediction range is L = 2 steps.

Expression (4.4.1) holds for general choices of pilot symbols, but the com-
plexity may be decreased further by considering only dedicated pilots (as op-
posed to overlapping pilots). The measurement equation is then completely
decoupled between different UEs, which makes the state estimation error
covariance matrix Pt|t in the KF recursions block diagonal. This, in turn,
means that we may run a separate KF for each UE without losing perfor-
mance, which means that the complexity increases only linearly with the
number of UEs. In that case, the complexity is easily computed by setting
n = wk instead of n = uwk in the complexity expressions, and then multi-
plying the final result by u. The dashed lines of Figure 6.11 show the number
of real operations required for one update for filter widths w = 4 and w = 8
when these decoupled KFs can be used.

While the numerical complexity is considerably lower when dedicated
pilots are used than when the pilots are overlapping, we should point out,
as we did in Section 6.4.1, that dedicated pilots may exhibit a substantial
spread in NMSE values. When adaptive OFDMA is used, so that modulation
formats are adapted to the instantaneous SNR in small resource blocks, it is
preferable to have a constant NMSE over a resource block.

The WINNER baseline system would require a new prediction for each
slot of duration 0.34 ms for vehicular UEs. To assess the feasibility of the
required computational complexity, we here investigate the consequences of
setting 1010 real operations per second as a target for feasibility for uplink
predictors realised in the base station. This would correspond to a limit of
3.4 · 106 operations per update (0.345 ms). As is evident from Figure 6.11,
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Figure 6.11: Complex arithmetic operations per update vs. number of UEs u for
predicting a competition band containing 160 predicted subchannels, using either
40 KFs of filter width w = 4 (lower pair) or 20 KFs with width w = 8 (upper
pair). Solid lines represent a general choice of pilots. Dashed lines represent the
use of dedicated pilots and u decoupled KFs for each set of w subchannels.

using eight parallel subchannels would then be infeasible both for general
and dedicated pilots, while four parallel subchannels is slightly above the
limit for general pilots but falls well within our boundary for the decoupled
case (dashed). The use of Kalman-based uplink prediction may therefore be
feasible with a filter width of 4 under these assumptions.

Lower complexity targets would be realistic for predictors located in ter-
minals. We return to that case in Section 8.7.

6.7 Discussion and conclusions

In this chapter, we investigated various choices of pilot design in the uplink of
a multi-user multi-transmit-antenna OFDMA system dimensioned according
to the WINNER radio concept. In this experiment, channels from u potential
uplink users are predicted simultaneously by Kalman predictors that use w
subchannels. It was stressed that if the pilots from different UEs are allowed
to overlap, then the pilot overhead can be kept at a reasonable level while the
frequency selectivity over the whole filter bandwidth may still be sampled for
every UE.

It was found that prediction performance drops considerably when the
number of UEs exceeds the number of simultaneously tracked subchannels
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w. Expressions for the size of this performance drop was derived for a special
case.

We found that the use of time varying pilots, here referred to as cyclic
pilots, can remedy the performance restriction imposed by the filter width w.
This is especially important in the downlink of CoMP systems, where many
beams from multiple base stations have to be tracked simultaneously.

It should however be pointed out that overlapping pilots will cause logical
correlations between the estimated/predicted channel coefficients, although
there may be no physical correlation in the actual channel. If in a MIMO
system the channel matrix H has uncorrelated elements, then the estimation
Hest or the prediction Hpred may still have correlated elements due to the
logical coupling introduced by the overlapping pilots. If spatial multiplexing
is to be used, the predicted channel capacity can be calculated from the
eigenvalues of the matrix ĤpredĤ∗pred. However, if the elements of Hpred are
Gaussian but correlated, then to the best of the author’s knowledge, no closed
form expression for the joint probability density function for the eigenvalues
of ĤpredĤ∗pred exists.

When studying how prediction performance decrease with increased pre-
diction range, it was found that the Doppler spectrum is the channel char-
acteristic that mainly dictates prediction performance.

Although we have here investigated an OFDMA uplink, where many si-
multaneous UEs compete for the uplink resource, the problem formulation
is trivially extendable to MIMO systems and to coordinated multi-point
(CoMP) scenarios, where several base stations transmit simultaneously to
one UE. However, in CoMP settings it is especially important to consider
the case when the received signal strengths differ between the inputs. Build-
ing upon the framework described in this thesis, the CoMP setting has been
considered in [86], and is under continued investigation at present.
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Figure 6.12: Pilot layout. Time runs horizontally and frequency runs vertically.
Light gray indicates payload symbols. Dark gray indicates pilot symbols.

6.A Further studies

6.A.1 Channel estimate interpolation

When pilot symbol assisted modulation is used, as is the case here, the esti-
mated channel at the pilot sub-locations inevitably needs to be interpolated
(and possibly extrapolated) to payload sub-locations prior to channel equal-
ization. This is typically done by e.g. fitting a quadratic surface over a region
(in most cases a chunk) surrounding a few pilot sub-symbols. Compared to
the NMSE obtained by the filter on pilot sub-locations, the interpolation
process may lead to an increased NMSE. We here investigate whether this is
the case.

We assume the WINNER II C2 NLOS channel with a flat Doppler spec-
trum (see Figure 5.2) at a maximum normalized Doppler frequency of 0.02.
For example, the WINNER system parameters with a pilot spacing of 115.2
μs at a user terminal velocity of 50 km/h and a carrier frequency of 3.7 GHz
gives rise to this Doppler frequency. Because of the frequency selectivity
and the lack of spectral components in the Doppler spectrum, this choice of
channel makes extrapolation reasonably “difficult”. subchannel spacing and
OFDM symbol duration is 15 kHz and 28.8 μs, respectively. Pilot symbols
are located at every 4:th subchannel and every 4:th OFDM symbol. See
Figure 6.12.

The NMSE at payload sub-locations can be calculated by setting up an
“augmented” state space by pretending that the payload sub-symbols in
Figure 6.12 are pilots with value 0. The total filter bandwidth is then 16 and
pilot sequences are time-varying with period 4. In setting up the augmented
system, the Doppler frequency should be divided by 4, since the duration
between “pilots” is a quarter of that in the original (pilot-spaced) system.
By calculating NMSE values for the augmented system as given by an optimal
Kalman filter (KF), we obtain the lowest NMSEs that can be achieved with
any type of interpolation over measurements that were available to the filter.

Figure 6.13 shows NMSE performance for the filtered estimates (i.e. es-
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timates using measurement up to the most recent time) for each of the 16
subchannels for a number of SNR values. For symmetry reasons, the curves
are pairwise identical so that 9, not 16, curves are visible6. Clearly, they all
have a period of 4. The thick, solid lines indicate the NMSE for the pilot
symbol locations (which means that they are only defined for time indices
1,5,9, and 13). Again, because of symmetry, there are only two such lines
visible. Note that the payload subchannel curves corresponding to subchan-
nels 2,6,10, and 14 coincide with the pilot lines at every fourth time index,
as should be.

The two uppermost curves, which correspond to subchannels that need
to be extrapolated from pilots, have considerably higher NMSE than the rest.
Extrapolation should therefore be avoided if possible, by using a pilot layout
that have pilots located on its edges.

In the figure, dashed lines indicate the mean NMSE for the whole 16-
by-16 grid of interpolated channel coefficients (upper line) and pilot symbols
locations (lower line). The difference between the two ranges from a fraction
of a decibel at low SNRs up to about 1.5 decibels for high SNRs.

Whether the mean NMSE is a valid performance measure is a matter of
discussion. Channel encoding is a way of balancing out spots of high NMSEs
and/or SNRs, so if a channel code is applied to the payload symbols in the
grid, then the use of the mean NMSE as performance measure is justified. On
the other hand, if no encoding is used, then the weakest link – the payload
symbol with the highest NMSE – will dictate the overall performance. We
see from the figure that the highest NMSE values, if we exclude the two
highest curves (extrapolation), peak about one decibel up from the payload
mean NMSE, and hence is a performance degradation from the pilot NMSE
of between 1 and 2.5 dB.

However, if channel interpolation is carried out by fitting e.g. a quadratic
surface over the estimated channel at pilot locations, then in effect one has
smoothed the channel estimates. That is, future data is used for the esti-
mation of channel coefficients with sub-locations early in the grid. Despite
that this kind of smoothing is by no means optimal, one may expect that the
overall smoothed estimation performance on the whole grid is actually bet-
ter than the filtered estimates on pilot locations. To analyze whether this is
true, we reiterate the experiment from Figure 6.13, but this time smoothing
is used, so that all 16 pilot measurements are used when estimating each and
every location in the grid. See Figure 6.14.

We observe that the overall NMSE is generally considerably better than
the filtered estimates at pilot positions. Analogous to the case where extrapo-

6The asymmetric pilot sequence is the reason why 9 rather than 8 curves show in the
plots; subchannels 1 and 15 have identical NMSEs, as do subchannels 2 and 14, and so
on. subchannel 16, however, takes a unique position in terms of bad NMSE performance.
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Figure 6.13: Filtering NMSE versus time index for payload subchannels (thin,
solid) and pilot locations (thick,solid). Dashed lines indicate mean NMSE for
payload and pilot positions.

lation is avoided by placing pilots at the edges of the pilot layout, we may here
avoid the last three time indices, where smoothing performance coincide with
filtering performance, by truncating the grid at time index 13 where the last
pilots are located. If this is done, smoothing performance is always as good
or better than pilot filtering performance. Even if sub-optimal smoothing is
used, we therefore find that the filtering performance at the pilot positions
should be a good representative for the final interpolated channel estimation
performance.

6.A.2 Pilot design

The NMSE performance of a channel estimator/predictor will depend on the
pilot matrix Φt in (6.2.4), but finding an optimal choice of Φt is difficult. The
solution may vary depending on whether we look at channel estimation or
channel prediction. In this section we will attempt to optimize the pilots for
channel estimation when the channel is static and the filter is stationary. As
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Figure 6.14: Smoothing NMSE versus time index for payload subchannels (thin,
solid) and pilot locations (thick,solid). Thick dashed lines indicate mean NMSE
for payload and pilot positions. For comparison, the result from Figure 6.13 has
been plotted as thin dashed lines.
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criterion for optimality we use the minimization of the total NMSE. Hence
we seek to find (see Equation (4.3.14))

argΦt
min tr((HP̄fH

∗)�Rh), (6.A.1)

where P̄f = Pt|t (for all t) is the covariance matrix for the filtered state
estimation error xt − x̂t|t, and Rh is the covariance matrix for the channel
coefficients ht. The regressor matrix H is given by (6.2.1). From Table 4.1,
we see that P̄f satisfies

P̄f = P̄p − P̄pH
∗Φ∗t R̄

−1
e ΦtHP̄p, (6.A.2)

with

P̄p = FP̄fF
∗ + GQG∗ and R̄e = ΦtHP̄pH

∗Φ∗t + R, (6.A.3)

where P̄p is the error covariance for the one-step state predictions, and F,
G, Q, and R are model matrices defined in Section 6.2. Unfortunately, it is
not possible to find an explicit formula for P̄f , which makes the optimization
problem (6.A.1) very hard to solve, if not impossible. We therefore consider
a special case defined by two assumptions:

1. We consider u independent UEs with flat fading channels.

2. We consider a filter without memory, so that P̄p = Π0, where Π0 =
‖xt‖2 is the prior covariance for the state vector chosen in such a way
that the model is stationary (see Theorem 4.2.1).

Assumption 1 means that, for each UE, all w elements in the vector of channel
coefficients, ht, are identical. We can therefore rewrite the measurement
equation (6.2.4) as

yt = Ψh̄t + vt = ΨH̄xt + vt, (6.A.4)

where h̄t is a w-vector whose i:th element is the (single) channel coefficient
for UE i. Here, H̄ = SH, where S is a u× wu matrix with exactly one 1 in
each row and column and all other elements 0. The matrix S is constructed
so that it picks out one of the w identical channel coefficients from each
UE. The w × u matrix Ψt is defined in (6.4.1). Column i in Ψ is the pilot
sequence used by UE i. Since we here consider a static model and a filter
without memory, there is no point in having time varying pilots, which is why
we have omitted the time index for Ψ in (6.A.4). We also assume normalized
pilots, so that each pilot sequence of w symbols has energy w. This means
that the diagonal elements of Ψ∗Ψ are identically w.

Multiplying (6.A.2) from the left and the right by H̄ and H̄∗, respectively,
we get

H̄P̄fH̄
∗ = H̄P̄pH̄

∗ − H̄P̄fH̄
∗Ψ∗(ΨRhΨ + R)−1ΨH̄P̄fH̄

∗. (6.A.5)
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The channel covariance matrix is given by Rh = HΠ0H
∗. Using Assumption

2, we find that

H̄P̄fH̄
∗ = Rh −RhΨ

∗(ΨRhΨ + R)−1ΨRh = (R−1
h + Ψ∗Ψ)−1. (6.A.6)

To obtain the last expression in (6.A.6), we have used the matrix inversion
lemma (see Appendix 3.A.2) and the fact that R = I.

The optimization problem is then to find

argΨ min tr[(R−1
h + Ψ∗Ψ)−1 �Rh] (6.A.7)

under the constraint that

diag(Ψ∗Ψ) = [w w . . . w]T , (6.A.8)

where � means element-wise division, and diag(A) is a vector holding the
diagonal elements of A.

The optimization problem (6.A.7) is a system of polynomial equations
in the unknown elements of Ψ and can be solved numerically. Carrying out
the numerical optimization on a few example cases, we make the following
empirical observations:

Observation 1: When the number of UEs u is less than or equal to the filter
width w and all UEs have the same SNR γ and independent channels, the
optimal choice of pilots under the assumptions in Section 6.A.2 is any set of
orthogonal sequences. The filter estimation NMSE per UE, ξu≤w, is then

ξu≤w = (1 + wγ)−1. (6.A.9)

Observation 2: When the number of UEs u is w + 1, where w is the filter
width and all UEs have the same SNR γ and independent channels, one
optimal choice of pilot sequences under the assumptions in Section 6.A.2
is one where the sequences constitute the vertices of a w-simplex (with an
arbitrary rotation in the complex w-space). The filter estimation NMSE per
UE, ξu=w+1, is then

ξu=w+1 =
1 + γ

1 + (w + 1)γ
. (6.A.10)

Observation 3: Multiplying the UEs’ respective pilot sequences (i.e. the
columns of Ψ) with arbitrary complex numbers of unit modulus does not
change the total NMSE. The set of all optimal solutions to (6.A.7) are given
by simplex vertex sequences subjected to such multiplications.

We study a system of 5 UEs (u = 5) tracking four parallel pilot subchan-
nels (w = 4). Each UE has a flat fading channel with a flat AR4 Doppler
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Figure 6.15: Five UEs sharing four subchannels, four UEs of which have
SNR=10 dB and the fifth having variable SNR, here denoted γ5. Pilot sequences
were optimized for an assumed SNR of UE 5={0 dB, 10 dB, 20 dB} (dotted,dash-
dotted,dashed), and optimized for the true SNR for UE 5=γ5 in each point(solid).

spectrum with maximum normalized Doppler frequency 0.06. The SNRs of
four UEs are held constant at 10 dB while the SNR of the fifth UE is varied
over a wide range. The pilot sequences are then optimized for a number of
different scenarios and the NMSE performance of optimal filters operating
on these pilot sequences are calculated.

Figure 6.15 illustrates the respective NMSEs of the five UEs for different
pilot optimizations. We use pilot sequences calculated according to (6.A.7)
for the true SNRs, 10 dB, for UEs 1 through 4, and for the SNR for the fifth
UE set to 0 dB (case A), 10 dB (case B), and 20 dB (case C), respectively.
For completeness, we also consider a fourth case, where we in each point
calculate new pilot sequences for the correct SNRs of all five UEs (case D).
For each of the four investigated scenarios, two curves are produced; one for
UEs 1–4 (lower curve at the far left), and one for UE 5 (upper curve at the
far left).

In case C (dashed lines), when the fifth UE is assumed to strongly dom-
inate over the other UEs, the optimization algorithm minimizes the inter-
ference from UE 5 by allocating to it an exclusive dimension in the four-
dimensional signal space. UEs 1–4 will be symmetrically distributed over
the remaining three dimensions, so that their NMSE is given by (6.4.5) with
w = 3 (straight dashed line). The fifth UE is undisturbed by other UEs. Its
NMSE performance is therefore the same as that of a single UE having filter
width 4. Its performance curve therefore coincides with the case w = 4 for
flat fading in Figure 6.2.
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The other extreme case is case A (dotted lines), in which the interference
caused by UE 5 is assumed to be almost negligible. The optimization algo-
rithm will then ignore UE 5 and create mutually orthogonal pilot sequences
for UEs 1–4. As the SNR of UE 5 goes to zero, their NMSE curves will
therefore asymptotically go to the level of performance for a single user at
10 dB (lower dotted curve at the left). This level is somewhat lower than
(6.4.4) due to some performance gained from the channel’s time dynamics.

Case B falls in between cases A and C. At 10 dB, the point for which the
pilot sequences have been optimized, the two curves cross at (approximately)
the NMSE value given by (6.4.5) with w = 4.

Note the general behaviour of case D: the optimization scheme “sacrifices”
the UE(s) having the worst SNR. To the left in the figure, the tendency is
towards case A, so that the group of four UEs have decent NMSEs whereas
UE 5 would be practically undetectable for the detector. As the SNR of UE
5 rises past 10 dB, the behaviour of case C is preferred so that all effort is
put on producing a high NMSE for the upcoming promise, UE 5.

As the SNR of UE 5 goes to infinity, one would perhaps expect that the
asymptotic performance of UEs 1–4 would be lower than what is indicated
in Figure 6.15. Except for case C, when the pilot sequence used by UE 5
is practically orthogonal to other pilot sequences, the interference caused
by UE 5 could be expected to completely destroy the performance of UEs
1–4. It is therefore interesting to note that by jointly estimating all five
channels, the performance for UEs 1–4 does not go below that of case C,
where, although one dimension in the signal space is lost, UE 5 does not
cause any interference.

Note that when we go from a fully loaded system with NMSE (6.4.4) to
an overloaded system with NMSE (6.4.5), the NMSE penalty is severe. The
overall conclusion from the pilot optimization is therefore that UE overload-
ing should be avoided. However, there may be situations when a poor NMSE
performance is acceptable. For example, opportunistic greedy scheduling
aims to allocate radio resources to the UE currently having the best channel.
This may be possible to do even at comparably high NMSE levels. If the
channels of the respective UEs are slowly fading so that channel prediction
performance is virtually the same as channel estimation performance, then
it may be worth the while to let one extra UE compete for the resources in
the competition band, at the expense of increased NMSE levels.

The study conducted in Figure 6.15 was carried out on flat fading chan-
nels. When the UEs experience channels that are frequency selective, NMSE
levels will depend on what pilot sequences the numerical optimization al-
gorithm happens to find. We repeat our study of optimal pilot sequence
performance, but here we use the frequency-selective WINNER II C2 NLOS
channel for all five UEs. All other parameters are identical. See Figure 6.16,
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Figure 6.16: NMSEs of five UEs tracking four parallel subchannels, four UEs
of which have SNR=10 dB and the fifth has variable SNR, here denoted γ5.
Pilot sequences were optimized for γ5 = {0 dB, 10 dB, 20 dB} (dotted,dash-
dotted,dashed), and optimized in each point γ5 (solid).

in which u = 5 UEs share w = 4 subchannels. The difference between Fig-
ures 6.15 and 6.16 is, except some discrepancies in actual NMSE levels, that
the curves spread out in the latter, especially for high SNRs. The reason is
that for frequency-selective channels of w subchannels, the cross-correlation
between the channels depend on how the set of u pilot sequences happens to
be rotated in w-space. For flat fading channels, this rotation is irrelevant.





Chapter 7
Link adaptation for uncertain channel

state information

7.1 Introduction

In this chapter we consider the problem of link adaptation in a MIMO-
OFDM system with imperfect channel estimation and prediction. Depending
on channel quality, the MIMO capability allows for the creation of one or
many spatially independent links between the base station (BS) and the user
equipment (UE), through spatial multiplexing or beamforming.

The basic principle for link adaptation is to adjust transmission parame-
ters to compensate for or utilize fluctuations in the instantaneous link qual-
ities, so as to produce as high a transmission rate as possible, while main-
taining performance constraints such as bit error rates or packet error rates.
Link adaptation is complicated by the fact that channel estimates are imper-
fect and that channel prediction is required to compensate for system delays
when using the most advanced, high-performance strategies. This chapter
discusses how to take into account uncertainties stemming from channel es-
timation and prediction when taking link adaptation decisions.

The system that we will consider has a given set of available coded mod-
ulation (CM) formats, each giving rise to certain spectral efficiencies and bit
error probabilities, ranging from a CM format with few bits per symbol1 and
a low error probability (e.g. coded BPSK), to a format with many bits per
symbol but comparably high error probability (e.g. uncoded 64QAM).

The transmission resource unit used in OFDM link adaptation and schedul-
ing is the resource block (RB). The size of the RB is assumed to have been
chosen in such a way that the channel fading is moderate within the block.

1We shall here refer to a time-frequency symbol in an OFDM symbol as just a symbol.
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A single CM format is used within an RB. If the CM format is a coded for-
mat, then the code operates within the block only. We will assume that K
simultaneous RBs per user are considered for each link adaptation decision.
The K blocks can be distributed in the frequency and space domains, but
are assumed to be fairly narrowly localized in time.

To achieve good performance in terms of bit error rate (BER) versus
signal-to-noise ratio (SNR), it is also common to apply a strong channel
code, commonly denoted the outer code. Turbo codes and Low-Density
Parity-Check (LDPC) codes are known to have near-capacity performance
for Additive White Gaussian Noise (AWGN) channels and are therefore used
in e.g. LTE [33] and the WINNER II system concept [74]. If the channel
code is a block code, it should operate on fairly large codewords, since large
block codes generally have better performance than small block codes. The
number of resource blocks K assigned to a user should be large enough that
at least one codeword of the channel code fits within the K RBs. When
an outer code is used, we assume the use of bit-interleaved coded modulation
(BICM) [87], so that the output bits from the encoder are interleaved before
they are mapped onto symbols.

From channel quality measurements of the K RBs, the link adaptation
algorithm should then determine transmission parameters such as transmis-
sion power, the CM formats for the respective blocks, and/or the rate of
the outer code. Due to the inevitable delay in the control feedback loop,
adaptation decisions will have to be based on uncertain channel predictions.

The ultimate purpose of the link adaptation is to maximize the through-
put of error-free data, which we here refer to as just the throughput. Trans-
mitted and decoded data packets of a predefined size are checked for errors
using e.g. a cyclic redundancy check (CRC) code, which almost certainly will
detect any error. The expected throughput for a packet of K resource blocks
with SNRs given by a K-vector γ̄ is then

expected throughput = (1− Ppa(γ̄,m))r(γ̄,m), (7.1.1)

where Ppa(γ̄,m) is the packet error probability and r(γ̄,m) is the transfer
bit rate, given SNRs γ̄ and transmission parameters m. For simplicity, we
above assume that erroneously received data packets are discarded and have
to be entirely retransmitted. The transmission parameters should then be
adapted so as to maximize the expected throughput (7.1.1). The dilemma
is of course that changing a transmission parameter will increase the error
probability at the same time as the rate increases, or vice versa. Also, since
the SNRs may vary among the resource blocks, maximization of (7.1.1) is a
hard multidimensional optimization problem.

We may also express the expected throughput in terms of the codeword
error rate (CWER). The outer code, if used, produces codewords that ex-
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hibit a code word error probability Pcw. Assuming independent and equal
codeword error probabilities between the different codewords in a packet, we
have:

expected throughput = (1− Pcw(γ̄,m))ncwr(γ̄,m), (7.1.2)

in which ncw is the number of codewords per data packet. Analogously, we
can write

expected throughput = (1− Pb(γ̄,m))nbr(γ̄,m), (7.1.3)

in terms of the post-decoder bit error probability Pb and the number of bits
per packet nb. Again, we then assume independent bit error probabilities.
This is a valid assumption if BICM is used, so that the bits are scrambled
over the transmission.

The link adaptation algorithm should determine the optimum values of
the error probability and the data rate in (7.1.2) or (7.1.3), and then adjust
the transmission parameters m to achieve those values based on uncertain
predictions of the SNRs γ̄. An example of such an optimization is given in
[88], where the throughput (7.1.3) is maximized for uncertain predictions,
without using an outer code.

Here, we simplify the problem statement and assume that the target Pcw

or Pb has been determined in such a way as to produce a high expected
throughput, possibly taking constraints on the packet transmission delay
statistics into account. Link adaptation then amounts to producing as high
a rate r(γ̄,m) as possible, under the constraint of a fixed codeword error
probability Pcw or a fixed bit error probability Pb. In this work, the trans-
mission parameters m to be adjusted are the local CM formats and the rate
of the outer code.

7.1.1 Decision metric

To maintain a certain error rate, we need to find a metric ν that correlates
with the error rate that we wish to constrain. We will here examine two
different choices of ν. If we choose to have a fixed bit error rate, then ν
is the average bit error rate Pb itself, averaged over the K RBs. If, on the
other hand, we wish to have a fixed codeword error rate Pcw and we employ a
near-capacity achieving channel decoder based on soft detection metrics, then
the appropriate metric is the average mutual information per bit, Īc, again
averaged over the K RBs, as a number of works have shown [89],[41],[90].
We shall therefore consider ν = Pb or ν = Īc, depending on link adaptation
strategy.
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Link adaptation may be divided into three categories; optimization of the
rate of the outer code, optimization of local CM formats, or joint optimiza-
tion of both local CM formats and outer code rate. In this chapter we will
study the two latter link adaptation strategies under the presence of channel
estimation and prediction errors. Link adaptation decisions will be based on
the metric ν, which in turn is formed from uncertain channel predictions.

Two time instants are central to the link adaptation problem in a channel
prediction setting: the time of decision, which we here take to be t = 0 and
which is the time when the link adaptation decision needs to be taken, and
the time of detection, which we set to t = L so that the prediction range is
L time steps.

The fundamental problem of link adaptation with channel prediction is
that at t = 0, we will be uncertain about what value ν will have at time
t = L. We will here assume that ν is the arithmetic mean value of local
metrics {νk}K

k=1, where νk is the local metric for resource block k. If νk is
associated with bits, we then have

ν =

∑K
k=1 mkνk∑K

k=1 mk

, (7.1.4)

where mk is the number of bits per symbol used in resource block k. The
relation (7.1.4) holds for the two metrics P̄b and Īc to be studied here, if
νk is defined as either local bit error probability or local average mutual
information per bit. Since we assume practically flat fading within an RB,
νk will be a function of the transmission parameters and the SNR γk in that
RB.

Each νk may have a broad distribution and the {νk}K
k=1 are often corre-

lated, complicating the calculation of the distribution of ν. To simplify the
problem, we group {νk}K

k=1 into N sets {Ωn}N
n=1. A set Ωn defines a small

region in the parameter space for the pdf for a resource block’s SNR, so that
all γk : k ∈ Ωk have approximately the same pdf. The link adaptation must
then attribute the same transmission parameters to all RBs in a set Ωn, so
that all νk belonging to the same set Ωn therefore have approximately the
same distribution. The total metric ν can thus be written as

ν =

∑N
n=1 mk(n)|Ωn|ν̄n∑N

n=1 mk(n)|Ωn|
, (7.1.5)

where |Ωn| is the cardinality for Ωn, and k(n) is the index for an arbitrary
RB in Ωn, so that mk(n) is the number of bits per symbol used by all RBs in
the set Ωn. The quantity ν̄n is defined as

ν̄n = |Ωn|−1
∑
k∈Ωn

νk. (7.1.6)
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If K is large enough that the channel decorrelates several times over the K
blocks, this means that although an individual νk may have a broad distri-
bution, ν̄n may be narrow owing to the central limit theorem if |Ωn| is large.
Instead of having K broad distributions to consider, we then have N fairly
narrow distributions, making the link adaptation decision simpler. In Section
7.2.4, we shall see how letting K go to infinity in fact makes all uncertainty
about the future value of ν vanish.

7.2 Decision metrics using channel prediction

At time t = 0 we want to infer a decision metric ν pertaining to time t = L.
This decision metric ν is a mean value of values νk local to individual RBs. In
flat-fading scenarios such as ideal OFDM, a local metric νk will be a function
of the local SNR γ. To enable efficient link adaptation, we must therefore
consider the distribution of the future γ(t = L) at t = 0. This requires us to
model the fading channel.

7.2.1 Channel model

High quality channel estimates, necessary for coherent detection, are here
assumed to be produced by a Kalman filter based on a state space channel
and measurement model,

xt+1 = Fxt + Gut,

ht = Hxt,

yt = Φtht + vt,

(7.2.1)

where ut, vt, and x0 are zero-mean Gaussian, white and

‖{ut,vt,x0}‖2 = diag(Q,R, Π0). (7.2.2)

The state covariance matrix Πt = ‖xt‖2 obeys the recursion (see Theorem
3.4.1)

Πt+1 = FΠtF
∗ + GQG∗. (7.2.3)

Here we will assume that Π0 is assigned in such a way that the model becomes
stationary, i.e. the state covariance has a constant value (see Section 4.2.4),

Π ≡ Πt. (7.2.4)

We furthermore assume pilot-assisted channel estimation and prediction,
so that (7.2.1) is sampled on sub-locations containing known reference sym-
bols (pilots). The vector ht is the modelled fading channel coefficients, and
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Φt contains pilot symbols. The model (7.2.1) is general enough to represent a
multiuser MIMO system as described in Chapter 4. If u simultaneous inputs
are tracked, where each input is the signal from one transmitting antenna,
the vector ht has length uw, so that w parallel pilot-bearing subchannels per
input are tracked in parallel in the fading OFDM channel. A high value of w
leads to good estimation performance but also high algorithmic complexity.

Optimal filtered estimates x̂t|t of the state vector xt, i.e. estimates based
on noisy measurement up to the present time t, are recursively produced by
a Kalman filter (KF),

x̂t|t = (I−Kf,tH)Fx̂t−1|t−1 + Kf,tyt, (7.2.5)

where Kf,t is the Kalman filter gain calculated from the KF recursions (see
Section 4.3.1). Optimal channel estimations of the w parallel channel coeffi-
cients are then calculated as

ĥt|t = Hx̂t|t (7.2.6)

and optimal L-step predictions are calculated as

ĥt+L|t = HFLx̂t|t. (7.2.7)

From (3.4.47) it follows that the prior distribution for L-step predictions,
which is here the same as the frequency distribution over time, is

p(ĥt+L|t|I) = CN (ĥt+L|t; 0,HΣt+L|tH
∗). (7.2.8)

where Σt+L|t is the covariance matrix for the state prediction, see Definition
3.4.1. Further, for a predicted vector of channel coefficients we have the pdf

p(ht+L|Yt, I) = CN (ht+L; ĥt+L|t,HPt+L|tH
∗), (7.2.9)

where Pt+L|t is the covariance matrix for the state prediction error. In the
above, following [48], we denote by a symbol Yt all measurements {y0, . . . ,yt}
up to time t. From (3.4.31) it follows that

HΠH∗ = HΣt+L|tH∗ + HPt+L|tH∗, (7.2.10)

where HΠH∗ is the constant covariance matrix for the channel coefficients
ht. Hence there is a balance between the power HΣt+L|tH∗ for the predic-
tions and the variance HPt+L|tH∗ of the prediction errors. That is to say,
for a channel with constant power, when the predictions are uncertain, then
HPt+L|tH∗ has large diagonal elements, while HΣt+L|tH∗ has small diagonal
elements, i.e. the predictions will almost always be close to zero. Conversely,
when the predictions are very accurate, then the error covariance HPt+L|tH∗
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has small diagonal elements while HΣt+L|tH∗ has large elements. The pre-
dictions will then be virtually the same as the true channel.

The KF produces filtered channel estimates for pilot sub-locations. To
detect a payload symbol at sub-location {f ′, t}, the channel estimates at pilot
sub-locations in its vicinity need to be intra- and extrapolated to this sub-
location, to produce a (sub-optimal) channel estimate �̂f ′,t|t. For simplicity,

we assume that the inter-/extrapolation consists of choosing �̂f ′,t|t = ĥf,t|t
as channel estimate, where ĥf,t|t is the optimal estimate of the true channel

coefficient hf,t for the nearest pilot sub-location {f, t}. Thus, �̂f,t|t is an

element in ĥt|t and corresponds to a location slightly displaced from the sub-
location {f ′, t} (to simplify notation, we let the displacement be a frequency-
wise displacement only). In what follows, we assume that the error caused
by the inter-/extrapolation can be neglected.

A received symbol yL at t = L can be expressed as

yL = sĥL|L + sh̃L|L + v, (7.2.11)

where ĥL|L and h̃L|L = hL|L − ĥL|L are the filtered channel estimate and
the filtered channel estimation error, respectively. The unknown payload
symbol with variance S is denoted s, and sh̃L|L is the residual unknown error
from the imperfect channel estimation. The thermal noise and interference
is denoted by v and is assumed to have known variance σ2

v . For brevity, we
have excluded the subchannel index, so that we define

hL|L � hf,L|L and ĥL|L � ĥf,L|L. (7.2.12)

Note that ĥL|L and h̃L|L are associated with the nearest pilot sub-location
{f, t}, while s and v are associated with the actual payload sub-location
{f ′, t}, so that v and h̃L|L are uncorrelated.

At the moment of decision, t = 0, the channel hL is unknown. At this
point, two aspects of the signal (7.2.11) need to be considered: the pdf of
the magnitude of the “effective” channel ĥL|L, and the power of the effective

noise sh̃L|L + v. In subsequent sections we will discuss these two aspects and
show that at the moment of detection, t = L, the effective SNR is

γ =
S|ĥL|L|2
σ2

v + Sσ2
f

, (7.2.13)

where σ2
f is the error variance for the filtered estimates which can calculated

from the KF. Note that we will infer the power of the future filtered estimate
ĥL|L, since this is what ultimately will dictate the effective SNR, and not the
power of the true future channel hL.



162 7.2. Decision metrics using channel prediction

7.2.2 The distribution of a future filtered estimate

The scalar channel estimate ĥL|L in (7.2.13) is an element in the vector ĥL|L in
(7.2.6). From measurements up to time t = 0 we therefore wish to calculate
the pdf of the future filtered estimate ĥL|L. First we study the future filtered
state estimate and observe that it may be written (by recursive application
of (3.4.40))

x̂L|L = FLx̂0|0 +

L∑
t=1

FL−tKf,tet. (7.2.14)

If measurements up to and including t = 0 is available, then x̂0|0 can be
constructed. The sum in (7.2.14) is however unknown at t = 0. Since the
innovations {et} are Gaussian, white, and zero mean, it is clear that the
sought distribution is Gaussian,

p(x̂L|L|Y0, I) = CN (x̂L|L; x̂L|0, ΞL|0), (7.2.15)

with mean value x̂L|0 = FLx0|0 and some covariance matrix ΞL|0. To find the
covariance ΞL|0, we first make the following definition.

Definition 7.2.1 (Variance of a future filtered state estimate). The covari-
ance of a future filtered state estimate is defined as

Ξt|t0 � E{x̂t|tx̂
∗
t|t|Yt0, I}, t > t0. (7.2.16)

A recursion formula for the future filtered state estimate can readily be
found as stated by the following theorem.

Theorem 7.2.1 (Recursion for Ξt|t0). Given the model (7.2.1) and Kf,t and
Re,t given by (3.4.33) and (3.4.34) in the KF recursions in Chapter 3, it
holds that

Ξt+1|t0 = FΞt|t0F
∗ + Kf,t+1Re,t+1K

∗
f,t+1, Ξt0|t0 = 0. (7.2.17)

Proof. Since the innovations {et} are uncorrelated with earlier state esti-
mates, taking the variance of x̂t+1|t+1 = Fx̂t|t + Kf,t+1et+1 (see (3.4.40))
gives the recursions. This, in combination with the fact that the filtered
state estimation vector can be constructed without error when t = t0 so that
the variance then is zero, proves the result.

Using this result, the future filtered state covariance can be expressed in
terms of state estimation error covariance matrices:

Theorem 7.2.2 (Ξt|t0 in terms of state estimation error covariance matrices).
Consider the model (7.2.1) and Pt|t0 and Pt|t obtained as in (3.4.46) and
(3.4.41). Then

Ξt|t0 = Pt|t0 −Pt|t. (7.2.18)
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Proof. Using the recursions (3.4.41) and (3.4.46),

Pt+1|t+1 = FPt|tF∗ + GQG∗ −Kf,t+1Re,t+1K
∗
f,t+1, (7.2.19)

Pt+1|t0 = FPt|t0F
∗ + GQG∗, (7.2.20)

and using (7.2.17), we find that

Ξt+1|t0 + Pt+1|t+1 = F(Ξt|t0 + Pt|t)F
∗ + GQG∗. (7.2.21)

Comparing (7.2.20) and (7.2.21), we see that the recursion in Ξt|t0 + Pt|t is
the same as that for Pt|t0 and that they are initialized with the same value,
Ξt0|t0 + Pt0|t0 = Pt0|t0. It must therefore hold that

Ξt|t0 + Pt|t = Pt|t0 , (7.2.22)

which gives the sought result.

Returning now to Equation (7.2.15) and using ĥL|L = Hx̂L|L, we find that

a future filtered estimate ĥL|L of a channel coefficient hL has distribution

p(ĥL|L|Y0, I) = CN (ĥL|L; ĥL|0, σ2
pf), (7.2.23)

where the mean value ĥL|0 is an element in Hx̂L|0, and the variance σ2
pf is

the corresponding diagonal element in HΞL|0H∗. The squared magnitude of

ĥL|L, which we define as

ẑL|L � |ĥL|L|2, (7.2.24)

can be shown to have the distribution (see Appendix 4.A)

p(ẑL|L|Y0, I) = χ2(ẑL|L; |ĥL|0|2, σ2
pf), (7.2.25)

where χ2(·) is the non-central χ2-distribution.
A number of previous works [4], [63], [64] use a different expression than

a non-central χ2-distribution for the pdf of a predicted channel. However,
this alternative expression can be shown to be identical to a non-central
χ2-distribution, although the variance used there differs from that used in
(7.2.25). See Appendix 4.B.

The diagonal elements of HΞL|0H∗ constitute the variances of future fil-
tered estimates, which play an important role in the channel prediction pro-
cedure, but what is the nature of ΞL|0? Is it preferable to have a ΞL|0 with
large or small eigenvalues? To acquire a better understanding of the matrix
ΞL|0, study Figure 7.1. Theorem 7.2.2 for the case of a static channel model
and a stationary filter is here illustrated in the form of a triangle in which
the sides and corners represent various extreme conditions.
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As seen in (3.4.31), state estimation error covariance matrices can at most
take the value Π, where Π is the stationary state covariance, see Definition
3.4.1. The left side of Figure 7.1 represents an extreme case in the sense that
prediction here is as bad as it could possibly be; this is the case when the
prediction range is very long, or the UE velocity is high, so that no relevant
information about the future channel is available to the predictor. Another
extreme situation, but now at the good end of the scale, is indicated by
the uppermost side. Here, channel estimation at the time of detection is
error-free. Going from a point on the left side to a point on the upper side,
the state estimation error covariances PL|0 and PL|L inevitably decrease.
ΞL|0, on the other hand, may increase, decrease, or stay constant along the
path, depending on start and stop locations. Therefore, ΞL|0 is not a quality
measure on its own standard. We need either PL|0 or PL|L as “reference” to
be able to tell whether the situation is good or bad.
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Figure 7.1: The relationship between the three covariances ΞL|0, PL|0, and PL|L
for a static channel model with constant state covariance Π and a stationary filter.

In Table 7.1, we summarize definitions of useful variances. From (3.4.31)
we know that ΠL = ΣL|0+PL|0. By (7.2.22) it therefore holds for a stationary
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Table 7.1: Definitions of variances.

symbol description diagonal element of. . .
σ2

h Channel power HΠH∗

σ2
f Error variance of a filtered estimate HPL|LH∗

σ2
pf Variance of a future filtered estimate HΞL|0H∗

σ2
p Variance of a prediction HΣL|0H∗

filter (Πt ≡ Π) that

σ2
h = σ2

f + σ2
pf + σ2

p. (7.2.26)

7.2.3 The effective noise at detection

In (7.2.11), we saw that the total effective noise at t = L is sh̃L|L + v, where

s is the transmitted symbol, h̃L|L = hL − ĥL|L is the channel estimation
error of the nearest pilot sub-location, and v is noise with variance σ2

v . We
assume approximate flat fading within the resource block, so that the optimal
channel estimate for the nearest pilot sub-location can be used as estimate
for the current payload sub-location.

Since by assumption v is white over both frequency and time and ĥL|L
is the channel estimate for a sub-location slightly displaced from the current
one, sh̃L|L and v will be uncorrelated. Assuming that s is unknown but has
prior variance S, the total effective noise variance is then Sσ2

f +σ2
v , where σ2

f

is the error variance of the filtered estimates, see Table 7.1.

We overestimate the impact of the total noise by modelling it as Gaussian
noise, which has the highest entropy for a given variance. However, we
expect the improvement that would result from a more careful modelling to
be negligible.

The reason why we cannot use the optimal estimate in the current sub-
location is that there is no pilot symbol present at that sub-location to aid
the pilot-assisted channel estimation. Iterative channel estimation (ICE) can
be used to remedy this. The unknown payload symbol is then detected in
a primary phase, based on a nearby channel estimate. Then, in a second
phase, this detected symbol is used as pilot to produce a channel estimate
ĥf ′,L|L for the current sub-location {f ′, t}. We can now use ĥf ′,L|L instead

of the estimate ĥf,L|L for the pilot sub-location {f, t} for payload detection,

but since the noise v lies in the subspace spanned by ĥf ′,L|L, this has the

consequence that ĥf ′,L|L and v are correlated. The total noise variance will
then not sum to Sσ2

f + σ2
v . See Appendix 7.A for further details on this

matter.

Above, we assume that the unknown payload symbol has variance S.
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(a) Without respect taken to es-
timation error.

(b) With respect taken to estima-
tion error.

Figure 7.2: Decision boundaries for a 64QAM constellation. Only the first quad-
rant is illustrated. The lines intersect at the positions of the error-free symbols.
The decision boundaries are given by the intersections of circular symmetric com-
plex Gaussian functions with appropriate variances centred at these positions. The
SNR without estimation error is 10 dB and the mean estimation error variance
here equals the noise variance, so that σ2

v = Sσ2
f = 0.1S.

However, depending on the value of the symbol s, the term sĥL|L will vary
considerably in magnitude. For example, the difference in energy between
the innermost and outermost symbols in a square 64QAM constellation is an
astonishing 17 dB [71]! The detector could take this knowledge into account
when considering each of the hypothetically transmitted symbols. When hard
decisions on transmitted symbols are used, this will lead to a displacement
of the ordinary decision boundaries (which are perpendicular bisectors to
the lines joining any two symbols). See Figure 7.2. When soft decisions are
used, the soft metric is calculated by summing over sets of hypothetically
transmitted symbols. The variance of sĥL|L + v, which now differs between
the terms in this summation, can in this case be varied appropriately without
imposing any additional complexity on the detector.

Assuming that ICE is not used and that we do not take the symbol-
dependent power variation of sĥL|L into consideration, it is convenient to
define an instantaneous SNR scaling factor as follows, cf. (7.2.13):

γ0 �
S

σ2
v + Sσ2

f

. (7.2.27)

The instantaneous effective SNR of a channel power zL is then γ0ẑL|L, see
(7.2.24), and its distribution based on measurements up to t = 0 is (see
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Appendix 4.A.2)

p(γ0ẑL|L|Y0, I) = χ2(γ0ẑL|L; γ0ẑL|0, γ0σ
2
pf). (7.2.28)

Also, we deduce from (7.2.8) that the frequency distribution for predictions
γ0ẑL|0 is

p(γ0ẑL|0|I) = χ2(γ0ẑL|0; 0, γ0σ
2
p). (7.2.29)

Since (7.2.29) has mean value zero, p(γ0ẑL|0|I) is an exponential distribution.

7.2.4 Predicted error rate

Turning now to specific decision metrics, we begin by studying the decision
metric ν = P̄b, where P̄b is the average bit error rate over the K resource
blocks assigned to a user. The link adaptation problem is to associate mod-
ulation formats with predicted effective SNR levels so as to maintain ν at a
certain prescribed level, while maximizing the transmission data rate.

Rate maximization under a constraint on the error rate has been con-
sidered before, e.g. in [32] and in [64], although the former type of results
considered neither channel estimation errors nor channel prediction errors,
and the latter considered channel prediction errors only. In these previous
works, the decision metric is completely known already at the time of deci-
sion. This may at first seem a bit surprising, because one would expect ν to
feature at least some small degree of uncertainty stemming from the predic-
tion. Below, we will see how ν = P̄b constitutes a special case in which, at
t = 0, no uncertainty as to the future value of ν exists.

The metric ν = P̄b is appropriate to use in situations where no outer
channel code is used, or when the outer channel decoder operates on hard
bit decisions. We consider detected bits before a prospective decoder and we
want to maximize the transmission rate while maintaining a given bit error
rate in the long run. Therefore, the data set over which we want ν to take a
specific value is infinitely large. Here, we may therefore say that the number
of resource blocks K assigned to a user goes to infinity.

As stated in (7.1.4), we take ν to be a mean value of K local metrics
νk. As further described in (7.1.5), it is convenient to group the K resource
blocks into N sets {Ωn}N

n=1 and express the total metric ν as

ν =

∑N
n=1 mk(n)|Ωn|ν̄n∑N

n=1 mk(n)|Ωn|
(7.2.30)

where mk is the number of bits per symbols used in resource block k, and
k(n) is an arbitrary RB in Ωn.
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A set Ωn defines a region in the parameter space for the effective SNR.
From (7.2.28), we know that the effective SNR is parameterized by the vari-
ance σ2

pf , and by the expected effective SNR γ0ẑL|0, which we in this section
for brevity define as

γ̂ � γ0ẑL|0. (7.2.31)

However, assuming that the same channel model is used over the whole band-
width and spatial domain, and assuming that the same set of pilots are used
for all RBs, the variance σ2

pf will be nearly constant. Therefore, the param-
eter space for the effective SNR is here one-dimensional so that a set Ωn

corresponds to a small range of γ̂-values.
As K →∞, we also let the number of sets N →∞ as well as the cardi-

nality for each set |Ωn| → ∞. In this limit, there is a direct correspondence
between a predicted effective SNR γ̂ and a set Ωn.

With the assumption of infinitely large sets, it follows that ν̄n, i.e. the
arithmetic mean value (7.1.6) of the local metrics {νk}K

k=1 in a set, is

ν̄n =

∫ ∞

0

νkp(νk|Y0, I)dνk, k ∈ Ωn (7.2.32)

without uncertainty, if the channel decorrelates several times over the set.
For an RB with index k, assume that we choose to use modulation for-

mat j in this RB. We then assign the local metric νk = Pb,j(γ0ẑL|L), where
Pb,j(γ0ẑL|L) is the bit error probability for modulation format j when the
effective SNR in the approximately flat fading RB is γ0ẑL|L. Since there is
a one-to-one relationship between Pb,j and γ0ẑL|L, we change variables (see
Section 3.2.2), and use (7.2.28) to find that

p(νk|Y0, I)dνk = p(γ0ẑL|L|Y0, I)d(γ0ẑL|L)

= χ2(γ0ẑL|L; γ̂, γ0σ
2
pf )d(γ0ẑL|L).

(7.2.33)

Hence we have that

ν̄n =

∫ ∞

0

νkp(νk|Y0, I)dνk

=

∫ ∞

0

Pb,j(γ0ẑL|L)χ2(γ0ẑL|L; γ̂, γ0σ
2
pf )d(γ0ẑL|L). (7.2.34)

Note that, since |Ωn| = ∞, we do not need to know the pdf:s for the individual
νk’s; it suffices to know their mean value, ν̄n, which is a function of γ̂ and
the modulation format j. In what follows, we will denote

Pp,j(γ̂, γ0σ
2
pf) �

∫ ∞

0

Pb,j(γ0ẑL|L)χ2(γ0ẑL|L; γ̂, γ0σ
2
pf)d(γ0ẑL|L) (7.2.35)
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the predicted bit error rate.

Turning now to the factors mk(n)|Ωn|/
∑N

r=1 mk(r)|Ωr| in (7.1.5), the prob-
ability that the predicted effective SNR lies in a small interval around γ̂
is |Ωn|/K, assuming that Ωn is associated with the effective SNR γ̂. As
K →∞, this quantity goes to the limit

|Ωn|/K → p(γ̂|I)d(γ̂). (7.2.36)

Inserting (7.2.35) and (7.2.36) into (7.2.30), we find

ν =

∫
mk(γ̂)Pp,j(γ̂)(γ̂, γ0σ

2
pf)p(γ̂|I)d(γ̂)∫

mk(γ̂)p(γ̂|I)d(γ̂)
, (7.2.37)

where j(γ̂) and mk(γ̂) are the modulation format and the number of bits per
symbol, respectively, to be used for predicted effective SNR γ̂. Observe that
(7.2.37) is completely known at the moment of decision t = 0. There is
no uncertainty involved. However, we have to know the long run frequency
distribution p(γ̂|I), see (7.2.29), in order to solve the link adaptation problem
here.

The link adaptation problem is to associate modulation formats with pre-
dicted effective SNR levels so as to maintain ν at a certain prescribed level,
while maximizing the transmission data rate. Since there is an infinite num-
ber of SNR levels, the link adaptation problem is here a infinite-dimensional
problem. However, it is reasonable to assume that high-level modulation
formats should be used for high predicted effective SNRs and vice versa, so
that one only needs to determine the SNR switching levels for the modulation
formats. As a function of J switching levels {b0, . . . , bJ−1} for the predicted
SNR γ0ẑL|0, where J is the number of available CM formats, we can therefore
write

ν =

∑J−1
j=0 m̄j

∫ bj+1

bj
Pp,j(γ0ẑL|0, γ0σ

2
pf)p(γ0ẑL|0|I)d(γ0ẑL|0)∑J−1

j=0 m̄j

∫ bj+1

bj
p(γ0ẑL|0|I)d(γ0ẑL|0)

. (7.2.38)

where m̄j and Pp,j(·) are the number of bits per symbol and the predicted
BER, respectively, for CM format j, and where bJ = ∞. Note that, since
K = ∞, no uncertainty as to the value of ν exists at t = 0. If, on the other
hand, one would want to restrict the bit error rate over a finite number K
of resource blocks, then ν would have a distribution, requiring the use of
decision theory to solve the link adaptation problem.

In Section 7.3, we will optimize switching levels {b0, . . . , bJ−1} in a few
case studies.
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A special case: perfect estimation

In [64], rate optimization is studied in the presence of channel prediction
errors, assuming perfect channel estimation at the receiver. The decision
metric was then marginalized over the pdf of the actual future channel hL

instead to the future filtered estimate ĥL|L as we do here. Our result is
identical to [64] in that case since under the assumption of perfect channel
estimation, marginalization over hL is the same as marginalization over ĥL|L.
This is clear from Theorem 7.2.2, since perfect channel estimation means
that PL|L = 0.

We close this section by studying some characteristics of the predicted bit
error rate Pp(γ0ẑL|0).

Characteristics of predicted BER curves

In [91], is is shown that the bit error rate for square MQAM, with M = 2k

and k is an even integer, can be fairly well approximated by

Pb,k(γ0ẑL|L) ≈ α1 exp(−α2γ0ẑL|L), (7.2.39)

with α1 = 0.2 and α2 = 1.6/(2k − 1). This approximation is good for high
SNRs but clearly not so for low SNRs, since Pb,k goes to α1 but should go
to 0.5 as γ0ẑL|L goes to zero. However, with α1 = 0.5, we may envision a
hypothetical modulation format for which (7.2.39) provides a good fit over
the whole range of SNRs, and use this hypothetical format to study predicted
bit error rates.

To see how the bit error rate performance is affected by prediction errors,
we will use (7.2.39) as the exact bit error rate probability for AWGN chan-
nels for this hypothetical format, even though it does not exactly follow the
behaviour of any square MQAM format.

Using (7.2.39) in the expression for the predicted bit error rate (7.2.35),
it turns out that the predicted bit error rate is here given by

Pp,k(γ0ẑL|0) ≈
∫ ∞

0

Pb,k(γ0ẑL|L)χ2(γ0ẑL|L; γ0ẑL|0, γ0σ
2
pf)d(γ0ẑL|L)

= β1 exp(−β2γ0ẑL|0), (7.2.40)

with β1 = α1c(σ
2
pf) and β2 = α2c(σ

2
pf), where the function c(σ2

pf) is given by

c(σ2
pf) = (1 + α2σ

2
pf)

−1. (7.2.41)

Conveniently, (7.2.39) and (7.2.40) have the same form, and their respec-
tive coefficients differ only by a factor c(σ2

pf ) which is independent of the
prediction ẑL|0.
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Figure 7.3: Approximative bit error rate performances for σ2
pf equal to 0 (solid)

and 3 dB (dashed) for an approximation of QPSK. The dotted curve marks the
exact BER curve for QPSK.

We now study the impact from varying the variance σ2
pf when α1 and α2

are fixed. We set α1 = 0.5 and α2 = 1.6/(22 − 1), so that (7.2.39) is lower
bounded by the bit error rate performance for QPSK, and examine how the
predicted BER is affected when σ2

pf = 0 and σ2
pf = 3 dB, respectively. See

Figure 7.3. Two mechanisms are at work. One is that a non-zero σ2
pf leads

to β2 < α2, so that (7.2.40) decreases more slowly than (7.2.39) when the
SNR increases. This is to be expected, since the uncertainty on the SNR
should have some negative impact on performance. The other effect is that
a non-zero σ2

pf also leads to β1 < α1, so that (7.2.40) is actually lower than
(7.2.39) for low SNRs. This is perhaps a bit more surprising. How can it
be that, at the lower end of the curve, it actually seems beneficial to be at
a high level of uncertainty? Since a high σ2

pf may stem from ignorance on
our part about the channel state, it would then seem that we could achieve a
better error rate performance simply by discarding information! Surely this
cannot be true.

Indeed it is not true. For an optimal filter, as was demonstrated in
(7.2.26), it holds that the total power of the tracked signal, σ2

h, is divided
between the error variance for the estimates, σ2

f , the variance of the future
filtered estimates, σ2

pf , and the power of the prediction, σ2
p ,

σ2
h = σ2

f + σ2
pf + σ2

p. (7.2.42)

Therefore, when varying only one of the three variances, we are at the same
time varying the channel power σ2

h. This is the reason why the error rate
may decrease with an increased NMSE – the increased prediction NMSE
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must come from an increased (true) signal power.

Although (7.2.39) may not be an appropriate approximation for MQAM
modulation here, the qualitative behaviour of predicted bit error rate per-
formance still holds; when prediction NMSE is increased, the bit error rate
curve is shifted upwards towards higher SNRs at the same time as it goes
down for low SNRs.

7.2.5 Mutual information for predicted channels

The second metric to be studied here is ν = Īc, where Īc is the average
mutual information (MI) per bit over the K resource blocks assigned to a
user. As first noted in [89] and later demonstrated in a number of works (see
e.g. [41],[90]), the error rate performance of efficient channel codes operating
on soft decisions from the detector is determined by the mutual information
between transmitted bits and the soft decisions, regardless of the modulation
type used. This means that constraints on e.g. the codeword error probability
can be translated to a constraint on the MI per bit.

The conditional mutual information for the channel between a transmit-
ted bit and a continuous soft detector output, given that the soft output is
z and the effective SNR is γ, is a function of z and γ that is here denoted
Ii(z, γ) and that is defined by2

Ii(z, γ) =
∑

bi∈{0,1}
P (bi) log

p(z, bi|γ)

p(z|γ)P (bi)

=
∑

bi∈{0,1}
P (bi) log

p(z|bi, γ)∑
b′i∈{0,1} p(z|b′i, γ)P (b′i)

, (7.2.43)

where the index i indicates which bit in a symbols’ bit pattern that is ad-
dressed, so that e.g. for 16-QAM, i ∈ {1, 2, 3, 4}. Note that Ii(z, γ) is a
function of both the SNR γ and the soft output z. The MI will generally be
different for different bits in a symbol’s bit pattern, so that, for an M-ary
alphabet, log2 M different channels per symbol need to be considered (see
Figure 7.4).

For a symbol with M bits in a flat fading resource block we then have

2Mutual information conditioned on the SNR γ but unconditional on the channel’s
input is in the literature often denoted I(X, Y |γ), where X and Y are “stochastic vari-
ables”. Conditional mutual information, conditioned on that b was input to the channel
and z was received, may be written I(X = b, Y = z|γ). Here, we are interested in the
mutual information conditioned only on that z was received, I(X, Y = z|γ).
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Figure 7.4: Channels from individual bits in a 16-ary symbol to the soft detector
output z.

the average mutual information per bit

νk = Īc � (log2 M)−1

log2 M∑
i=1

Ii(z, γ). (7.2.44)

Since at t = 0, our state of knowledge will be the same for all symbols within
an RB, the expression (7.2.44) can be used as local decision metric for a
resource block.

The soft output z can be any of a number of different measures. The most
common choice is to let z be the so called L-value, which is the logarithm of
the odds for bi taking either value, e.g.

z = log
P (bi = 1|y, I)

P (bi = 0|y, I)
, (7.2.45)

where y is the received signal. For this choice of z, exact and approximate
expressions for p(z|bi, γ) can be found in [92] for AWGN channels when M-
QAM symbol constellations are used3.

Alternatively, one may also simply let z = y, so that the mutual in-
formation is calculated directly from the received noisy signal y. Then
p(z|bi, γ) =

∑
s∈χi

b
p(z|s, γ)P (s), where s is a hypothetical transmitted sym-

bol and χi
b is the set of symbols in the symbol constellation whose i:th bit is

b.
Below, we outline the link adaptation procedure for any metric ν that

can be expressed as a sum of local metrics {νk}K
k=1, which is especially true

for Īc:

1. Calculate the pdf:s of the local average MI per bit {νk}K
k=1 through a

change of variables:

p(νk)|dνk| = p(z|γ)p(γ) |dz dγ|, (7.2.46)

3When the soft output is simplified to the so called max-log metric, expressions for
p(z|bi, γ) can be found in [93] for Nakagami fading channels, but since at t = L the
receiver will effectively experience an AWGN channel, we have no use for such results
here.
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where p(z|γ) is acquired as discussed above, and p(γ) is the pdf for the
future effective SNR, p(γ0ẑL|L|Y0, I), see (7.2.28). Note that the pdf:s
will depend on the local modulation format chosen.

2. Given an initial set of modulation formats {m0, . . . , mJ−1}, calculate

the pdf of the total metric ν =
∑K

k=1 mkνk∑K
k=1 mk

.

3. Use decision theory to decide whether the pdf for ν with sufficient
certainty guarantees that the condition on ν will be fulfilled when t = L.

4. Vary the transmission parameters, i.e. the local modulation formats,
to vary the shape of p(ν), and the outer code rate, which changes the
relation between ν and the prescribed CWER, so that the data rate is
maximized.

The above procedure is impractical due to a number of reasons: i) the pdf:s
of local MI per bit {νk}K

k=1 are very complicated to obtain, ii) the K RBs
will often exhibit strong correlation, making the calculation of the pdf of ν
difficult to carry out, iii) the pdf for ν may be irregular, making it hard to
take a decision from it, and iv) solving the control problem, i.e. deciding
which transmission parameters to use in order to maximize rate under a
constraint on the pdf of ν, is extremely hard due to the complicated coupling
from transmission parameters to the pdf of ν.

Steps 1 and 2 in the procedure outlined above can probably be replaced
by sampling; by drawing a large number of samples from the distributions
p(z|γ)p(γ) for the respective RBs, a set of representative samples from ν can
readily be calculated, so that an approximative distribution for ν is obtained.
The question still remains, however, as to how the transmission parameters
should be varied appropriately.

In Section 7.4, we shall attempt to use a simplified metric for link adap-
tation in a soft decoder scenario.

7.3 Adaptation of local CM formats

The optimization of local modulation formats has been solved for a number
of different assumptions. In [32] (and references therein), rate optimization
with perfect channel estimation and prediction is considered. In [64],[88], the
corresponding problem for perfect channel estimation but imperfect channel
prediction is presented. Here, we consider rate optimization when neither
channel estimation nor channel prediction are error-free.
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We attempt to maximize the rate

J−1∑
j=0

m̄j

∫ bj+1

bj

p(γ0ẑL|0)d(γ0ẑL|0) (7.3.1)

under the constraint that the average bit error rate (7.2.38) has a given value,
which we here set to 10−3. The {m̄j} are the numbers of bits per symbol
for the respective modulation formats, as in (7.2.38). Here we use BPSK,
QPSK, 16QAM, and 64QAM. We thus optimize the rate limits of uncoded
adaptive square MQAM under a bit error rate constraint. See Appendix 7.B
for further details.

We know from (7.2.26) that the total channel power is divided between
the estimation error variance σ2

f , the variance of the future filtered estimates
σ2

pf , and the power of the predictions σ2
p. For a given SNR, i.e. a given

channel power σ2
h, two degrees of freedom therefore exist. In Figure 7.5, we

investigate three cases: perfect estimation and prediction (solid curve), error-
free estimation and a prediction NMSE of 0.1 (dashed curve), and finally, a
prediction NMSE of 0.1 with estimation error at 50% of the noise power
(dotted curve). An NMSE of 0.1 is comparably low, while an estimation
error of 50 % is quite reasonable. Considering the performance drop from
the solid curve to the dashed curve, it is therefore evident from the figure
that the prediction error dominates the total decrease in spectral efficiency.
The impact from the estimation error is largely determined by the power of
the total noise that σ2

f contributes to, and not so much by the decrease in
σ2

p and/or the decrease in σ2
pf . For example, here we would anticipate the

dashed and the dotted curves to be separated by 1.5 = 1.76 dB, which is
close to the truth.

To see how spectral efficiency is affected by a varying prediction range, we
restudy Examples 4.2.1 and 4.2.2 from Chapter 4. In these examples, a two-
tap channel is modelled, in which each tap is characterized by an AR2 model
described by equations (4.2.17)–(4.2.19). The stabilizing solutions to the
discrete algebraic Ricatti equation (DARE) for filtered estimates errors and
prediction errors are calculated with (3.4.41) and (3.4.46), from which we can
calculate the stationary ΞL|0 with Theorem 7.2.2. The triplet {σ2

f , σ
2
pf , σ

2
p} is

then calculated according to the table at the end of Section 7.2.2.
The solid lines in Figure 7.6 illustrate the three variances for the velocity

72 km/h. The SNR is 10 dB as in Example 4.2.2. As seen from the lower
line in Figure 7.7, which illustrates the spectral efficiency for a range of
prediction horizons when uncoded adaptive MQAM transmission is used, the
performance deterioration is quite dramatic in the beginning; the spectral
efficiency falls to half its initial value in about 0.5 ms, which would here
correspond to 0.1 wavelengths.
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Figure 7.5: Spectral efficiency for different distributions of the total channel
power. Solid: σ2

p = σ2
h (perfect estimation and prediction), dashed: σ2

p = 0.9σ2
h

and σ2
pf = 0.1σ2

h (error-free estimation and a prediction NMSE of 0.1), and dotted:

σ2
p = 0.9σ2

h − 0.25, σ2
pf = 0.1σ2

h − 0.25, and σ2
f = 0.5 (prediction NMSE=0.1 and

estimation error at 50% of the noise power)

We also study link adaptation performance at pedestrian speed, which we
here set to v = 7.2 km/h. The dashed lines in Figure 7.6 illustrate the three
parameters {σ2

f , σ
2
pf , σ

2
p} for this velocity, and the spectral efficiency is given

by the upper line in Figure 7.7. At a tenth of the previous speed, we see
that the spectral efficiency decline is slower due to fact that the prediction
ranges are shorter (in number of wavelengths), and also that the overall level
is higher, since the estimation error is now lower.

It should however be pointed out that the Doppler spectrum in the stud-
ied example is rather broad due to the low model order (=2). This makes the
channel inherently very hard to predict. With a narrower Doppler spectrum,
e.g. resembling the Jakes Doppler spectrum or a unipolar line-of-sight spec-
trum, the deterioration in spectral efficiency with an increasing prediction
horizon would be significantly slower.

7.4 Joint adaptation of local CM formats and

outer code rate

The Mutual Information based Adaptive Modulation and Coding (MI-ACM)
algorithm was proposed in the WINNER project[94] and was first suggested
in [41]. The outer channel code is here derived from the so called mother
code, which is designed to have a low code rate (1/2 or less). By puncturing
the mother code, we may obtain an outer code with a desired rate. The
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Figure 7.6: Prediction power σ2
p (upper curves at the lower end of the scale),

future filtered estimate variance σ2
pf (middle curves at the lower end of the scale),

and estimation error variance σ2
f (lower, horizontal curves) for Example 4.2.2 from

Chapter 4. Solid curves correspond to v = 72 km/h, dashed to v = 7.2 km/h. The
carrier frequency was fc = 3 GHz, the pilot sampling period was tp = 0.2 ms, and
the SNR was 10 dB.
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Figure 7.7: Spectral efficiency as a function of prediction range for the studied
example. The upper curve corresponds to v = 7.2 km/h. The lower curve corre-
sponds to v = 72 km/h. The carrier frequency was fc = 3 GHz, the pilot sampling
period was tp = 0.2 ms, and the SNR was 10 dB.
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algorithm aims to adapt transmission parameters for local resource blocks in
conjunction with the rate of the outer code. This is generally a very difficult
problem, but as we shall see, the proposed algorithm possesses a number of
properties that will pave the way forward.

The code used in [41] is a Rate-Compatible Punctured Block-circulant
Low Density Parity Check (RCP-BLDPC) code. LDPC codes have very
good performance and can be efficiently implemented in hardware, which is
the reason why they were chosen as forward error correction (FEC) scheme in
the WINNER framework. Moreover, rate-compatible punctured codes keep
a “priority list” that describes in which order bits should be punctured. This
means that low priority bits are always punctured first, regardless of which
code rate is desired. With an hybrid automatic repeat request (HARQ)
retransmission scheme, extra parity bits can therefore be sent in the retrans-
missions if needed and be added to earlier codewords, hence decreasing the
code rate and increasing probability for correct detection.

In a Block-LDPC code, the parity check matrix is built from quadratic
blocks of size Z. These blocks can be either of two types:

0Z×Z or circ([01,s, 1, 01,Z−s−1]), (7.4.1)

where s is the number of steps in a circular shift of an identity matrix of size
Z. By conventionally letting s = −1 represent the zero matrix, a parity check
matrix that would otherwise be very large can now be represented by a much
smaller “base matrix”, in which each entry s ∈ [−1, . . . , Z − 1] represents a
Z × Z-block in the sparse parity check matrix. In the present investigation,
the base matrix has dimensions 24 × 48 and Z = 48, so that for a rate 1/2
code, a codeword is 482 = 2304 bits long. By puncturing elements in the base
matrix in the order given by the priority list, one can then produce codes of
code rates from 24/48 to 24/24. For AWGN channels, the codeword error
rates versus SNR for a range of code rates are illustrated in Figure 7.8.

The objective of the algorithm is to determine the modulation formats
{mk}K

k=1 to be assigned to a set of K RBs. After that, as many codewords
as possible should be loaded onto these RBs. How many codewords that
can fit depends on the code rate R, which also needs to be determined by
the algorithm. The modulation formats and the code rate should be jointly
optimized to maximize spectral efficiency, i.e.

η = R

K∑
k=1

mk (7.4.2)

should be maximized. The maximization must be done under some con-
straint, as discussed in Section 7.1. Here, the constraint is that the codeword
error rate Pcw=0.01.
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Figure 7.8: Codeword error rates versus SNR for the used RCP-BLDPC code,
punctured to rates (from left to right) 0.50, 0.55, 0.60, 0.66, 0.75, 0.80, 0.86, and
0.92. An AWGN channel was used, and the codeword size at rate 0.50 is 2304 bits.

7.4.1 Perfect channel state information

The optimization of (7.4.2) under the constraint Pcw = 0.01 seems very
difficult to carry out as it stands. As discussed in Section 7.1.1, a metric ν
must be chosen, that correlates with the codeword error rate. This metric
will be a function of the modulation formats {m1, . . . , mK} as well as the code
rate R, making (7.4.2) a multidimensional optimization problem. However,
by imposing a number of assumptions on the metric ν, the rate optimization
problem can be considerably simplified. The first assumption is as follows:

Assumption 7.1. The codeword error rate should be a function of the metric
ν and the code rate R of the outer code alone.

It has been shown ([89],[41],[90]) that when bit-interleaved coded modu-
lation (BICM) is used, the codeword error rate can be expressed as a function
of the code rate R and the average mutual information per bit (MI per bit)
Īc,

Pcw = Pcw(R, Īc), (7.4.3)

even when the channel is fading and multiple modulation formats are used
within one codeword, meaning that ν = Īc fulfills Assumption 7.1. The MI
per bit is expressed as

Īc =

∑K
k=1 Jm(mk, γk)∑K

k=1 mk

, (7.4.4)
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where Jm(m, γ) is the mutual information per symbol for bit-interleaved
channels for constellation size 2m and SNR γ [41]. As will be evident presently,
we will not be needing an explicit expression for Jm(m, γ). From (7.4.4), it
follows that ν = Īc fulfills the second assumption:

Assumption 7.2. The metric ν should be an arithmetic mean value of local
metrics {νk}K

k=1.

Since the SNR may vary within one RB is is necessary to use some sort
of mean SNR value. The mean value used here and in [41] is

γ = βf−1

(
n−1

s

ns∑
s=1

f(γs)

)
+ (1− β) min

s
γs, f(x) = log2(1 + x), (7.4.5)

where s and ns are the index for, and number of, symbols in an RB, respec-
tively. That is, AWGN capacity is used for averaging and RBs with high
SNR variations may be penalized by appropriately choosing the value β.

Choosing the specific “contour” Pcw=0.01 in (7.4.3), we construct the
implicit function R0.01(Īc), which for a given Īc tells which rate is needed to
achieve Pcw=0.01. Inserting R = R0.01(Īc) into (7.4.2), we get

η = R0.01(Īc)

K∑
k=1

mk, (7.4.6)

but this in itself does not make the optimization problem any easier. To
simplify the problem, we need the third assumption:

Assumption 7.3. For the required condition, e.g. Pcw = 0.01, there should
be an approximate linear relationship between ν and the code rate R of the
outer code.

It turns out that R0.01 is indeed approximately linear in Īc, which means
that by (7.4.4),

R0.01(Īc) ≈
∑K

k=1 mkR0.01(Jm(mk, γl)/mk)∑K
k=1 mk

. (7.4.7)

The factors R0.01(Jm(mk, γk)/mk) here appear as “local” code rates, i.e. they
have the same form as the total code rate R0.01(Īc), but they depend each
only on the SNR for a single RB. The spectral efficiency can now be written

η =
K∑

k=1

mkRlocal(mk, γk), Rlocal(mk, γk) = R0.01(Jm(mk, γk)/mk),

(7.4.8)
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which means that the total spectral efficiency is maximized when the local
efficiencies on each RB are maximized.

Since there is only a discrete number of modulation formats available,
local optimization over an RB is performed by choosing the modulation for-
mat m that gives the highest product mRlocal(m, γ). Simulations of all the
modulation formats over a wide range of SNR values show that it always
pays off to choose the highest modulation format, i.e. if there at a certain
SNR is a choice between selecting a low modulation format in combination
with a high rate and a higher modulation format at a lower rate, then the
latter will always give the highest spectral efficiency.

Local optimization is therefore carried out by first selecting the modula-
tion format m that can meet the Pcw constraint at the present SNR γ for
a code with the lowest rate 1/2, and then looking up the local code rate
Rlocal(m, γ) from simulated curves for AWGN channels.

The total code rate R = R0.01(Īc) can then be calculated from

R =

∑K
k=1 mkRlocal(mk, γk)∑K

k=1 mk

. (7.4.9)

From the K local format decisions and the total code rate R, the number of
codewords that can be interleaved, properly punctured, and loaded onto the
K RBs can now be determined.

We evaluate the algorithm on a synthetic channel described by the WIN-
NER B1 NLOS channel model (see Section 2.3.2). The velocity was 10 km/h
and the Doppler spectrum had broad peaks at ±fD, where fD is the maxi-
mum Doppler frequency. Figure 7.9 shows the result. The algorithm manages
to fulfill the constraint Pcw = 0.01 for nearly all SNRs while maintaining a
high spectral efficiency, which is in accordance with the results in [41].
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Figure 7.9: Codeword error rate (solid line, left figure) and bit error rate before
decoder (dashed line, left figure), and spectral efficiency (right figure) for a known
synthetic channel.
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We now reiterate the same experiment on a measured channel. Details
regarding the measurements will be presented in Section 8.2. See Figure
7.10. Here, the codeword error rate increases far beyond the acceptable
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Figure 7.10: Codeword error rate (solid line, left figure) and bit error rate before
decoder (dashed line, left figure), and spectral efficiency (right figure) for a known
measured channel.

level for high SNRs. There can be a number of reasons for this, one being
the possibility that the fading within the RBs is severe. To diagnose, we
conduct the same experiment again, but now the measured channel has been
preprocessed so that the fading within RBs is flat. See Figure 7.11. This
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Figure 7.11: Codeword error rate (solid line, left figure) and bit error rate before
decoder (dashed line, left figure), and spectral efficiency (right figure) for a known
measured and block fading channel.

remedies the problem, which makes it clear that the factor β in (7.4.5) needs
to be set appropriately to penalize fluctuations within the blocks.
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7.4.2 Imperfect channel state information

The algoritm described in the previous section chooses the transmission pa-
rameters {mk} and R based on exact channel state information. But how do
we choose transmission parameters when the SNRs {γk} are uncertain? As
we saw in Section 7.2.5, the theoretically correct procedure is impractical.
The MI-ACM algorithm based on the MI per bit suggested in the previous
section simplifies the link adaptation problem so that it reduces to solving
many local optimizations instead of one global optimization. Unfortunately
this simplification does not carry across to the case with imperfect channel
predictions, because the local metrics are then impaired with uncertainties
so that local optimizations cannot easily be carried out. We will therefore
attempt to use an alternative to the mutual information metric ν = Īc here.

As demonstrated in Section 7.4.1, the average MI per bit obeys a number
of assumptions that simplify the link adaptation problem considerably. We
here seek an alternative metric ν that adheres to the same set of properties.
The metric we propose to use here is

ν = 1− 2P̄c, (7.4.10)

where P̄c is the hard bit error rate (before the decoder). For the metric
(7.4.10), Assumption 7.2 is clearly met if the local metrics are defined as the
hard bit error rates for the respective RBs. It is also reasonable to think that
Assumption 7.1 will be met; since BICM is used, the interleaver scrambles
the bits so that it after hard detection will be more or less indistinguishable
from an AWGN channel. The channel is then characterized by one param-
eter alone, for example the bit error rate, or an affine mapping thereof. It
should be noted that because the channel decoder used here operates on soft
decisions, not all characteristics of the fading are lost in the interleaving. We
expect, however, that in the present context the channel will be adequately
characterised by the hard bit error rate alone.

Assumption 7.3 is investigated in Figure 7.12. Here we have calculated bit
error rate curves for all four modulation formats considered, as well as for a
large number of code rates. Noting for which SNR value each curve intersects
the Pcw constraint and converting this SNR value to a corresponding ν value,
Figure 7.12 is produced. The contour Pcw = 0.01 is plotted for all four
modulation types. As is clear from the figure, the ν-R correspondence is
more or less independent of the modulation format, which is desirable. The
relation is approximately affine, but linearity is required to simplify link
adaptation. The metric ν = 1− 4Pc would have been a better choice in this
respect, but in fact it does not matter; it suffices that there exists an affine
mapping from Pc to R that satisfies the three conditions for us to use any
affine mapping as metric ν. The reason we choose ν = 1− 2Pc is that then,
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Figure 7.12: code rate R versus the metric ν = 1 − 2P̄c required to fulfil the
constraint Pcw = 0.01. Results are plotted for all four modulation formats, but
the curves more or less overlap.

ν ∈ [0, 1], which also holds for ν = Īc. Although the curve in Figure 7.12
is not quite straight, the deviation from a straight line is approximately as
that for the Īc-R curve in [41].

Expressions for predicted bit error rates over infinitely many resource
blocks (K = ∞) were derived in Section 7.2.4, with details described in
Appendix 7.B. In order to reuse these results, we assume that the number
of resource blocks K allotted to the current user is very large.

We conduct an experiment with this choice of decision metric on a syn-
thetic channel and prediction range 1988μs. The channel has a power delay
profile according to the WINNER II B1 NLOS channel model (see Section
2.3.2). The pilots are spaced 284 μs in time and 60 kHz apart in frequency.
The Doppler spectrum has broad peaks at ±fD, where fD is the “maximum”
Doppler frequency, as described in Section 2.3.1. The velocity is v = 10 km/h,
and the carrier frequency is 2.66 GHz.

A pilot-assisted Kalman filter produces channel predictions and estimates.
For each RB, at time t = 0 a prediction γ0ẑL|0 of the SNR is produced. Local
bit error rates, one per modulation format, are then calculated from the
appropriate predicted bit error rate expressions, and converted to 1 − 2Pc-
values. From these values, the local code rates can then be determined from
Figure 7.12. The combination of modulation format and local code rate that
gives the highest spectral efficiency is then determined for the respective RB.
Finally, the global code rate R can be determined from the local code rates,
see (7.4.9). As in the previous experiment, the number of codewords that
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can be interleaved, properly punctured, and loaded onto the K RBs can now
be determined from the K local format decisions and the total code rate R.

The results are depicted in Figure 7.13. The constraint Pcw = 0.01 is
almost met, while preserving the spectral efficiency on a high level. This
indicates that the proposed algorithm is functional in the low velocity sce-
nario investigated here. However, we expect that at higher velocities, a more
proper implementation of the procedure outlined on page 173 should be used
in conjunction with a metric based on mutual information.
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Figure 7.13: Codeword error rate (solid line, left figure) and bit error rate be-
fore decoder (dashed line, left figure), and spectral efficiency (right figure) for a
predicted synthetic channel.

7.5 Summary

We have in this chapter considered link adaptation when the system is im-
peded by imperfect channel estimation and prediction. It was emphasized
that the object of prediction should be an effective SNR, characterized by
future filtered estimates of channel coefficients rather than the actual coef-
ficients themselves, and by a noise level dictated not only by thermal noise
and interference, but also by the channel estimation error variance. An ex-
pression was derived for the pdf of the predicted effective SNR. Although
we have in this chapter only considered single-input links, this expression is
valid for general multi-input channel models.

Link adaptation amounts to maximizing e.g. data transfer rate. The
maximization is subject to one or many constraints on system parameters.
In order to fulfil these constraint(s), a decision metric that correlates well
with the constraint(s) needs to be established. Two types of link adaptation
were considered: adaptation of local modulation formats, in which we used
the average bit error rate after hard detection as decision metric, and joint
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adaptation of local modulation formats and the rate of an outer channel code.
Here we used a decision metric based on average mutual information per bit.

In the former type of adaptation, we showed that uncertainties, which
normally are associated with channel prediction, vanish when we let the
number of resources over which we adapt go to infinity. Link adaptation
performance was studied in a few example systems. However, we stressed
that when the adaptation is to be carried out on only a finite number of
resources at a time, then uncertainty is an unavoidable and integral part
of the decision problem, so that decision theory necessarily has to be used
to solve the link adaptation problem. For the latter type of adaptation,
we outlined a procedure for how to take channel prediction and estimation
uncertainty into account. Although correct in principle, we stressed that
the proposed algorithm is difficult to implement. We studied link adaptation
performance for the idealized case of perfect channel prediction, and proposed
and evaluated a simplified scheme for how to take prediction uncertainty into
account. This scheme proved to work for low velocities.
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7.A Signal/noise correlation for decision feed-

back channel estimation

In Section 7.2.3 it was shown that channel estimation errors give rise to a
total noise that has variance Sσ2

f +σ2
v , where S is the average symbol energy,

σ2
f is the channel estimation error variance, and σ2

v is the thermal noise and
interference. This result rests on the fact that the channel estimation is based
on a nearby pilot rather than on the payload symbol at hand, which makes
the additive noise and the filtered channel estimate uncorrelated.

When iterated channel estimation is used, detected symbols are fed back
into the channel estimator. When symbols are correctly detected, they act
as regular pilots. To analyze the magnitude of the total effective noise in
this case, we consider the state-space system (7.2.1), where, in the ideal case,
Φt is diagonal with known diagonal elements. The Kalman filter produces
optimal filtered state estimates x̂t|t so that

yt = ΦtHx̂t|t + ΦtHx̃t|t + vt, (7.A.1)

where x̂t|t is the filtered estimate of the state vector, and x̃t|t is the estimation
error. The two last terms, ΦtHx̃t|t + vt, are inherently unknown and there-
fore constitute the total noise. From the relation x̂t|t = x̂t + Kf,t(Jtx̃t + vt),
where x̂t and x̃t are the one-step state predictions and the one-step state
error, and Kf,t is the Kalman filter gain, it follows that 〈x̂t|t,vt〉 = Kf,tR,
where R = ‖vt‖2, since 〈x̂t,vt〉 = 0 and 〈x̃t,vt〉 = 0. It also holds that
〈x̃t|t,vt〉=〈xt − x̂t|t,vt〉=−〈x̂t|t,vt〉. It is now easy to verify that the terms
in (7.A.1) are correlated according to∥∥∥∥∥∥

⎡
⎣ΦtHx̂t|t

ΦtHx̃t|t
vt

⎤
⎦
∥∥∥∥∥∥

2

=

⎛
⎝ΦtHΣt|tH∗Φ∗t 0 ΦtHKf,tR

0 ΦtHPt|tH∗Φ∗t −ΦtHKf,tR
RK∗

f,tH
∗Φ∗t −RK∗

f,tH
∗Φ∗t R

⎞
⎠ . (7.A.2)

The total noise at detection has variance given by the diagonal elements of
the sum of the four matrices in the lower right corner of (7.A.2),

ΦtHPt|tH∗Φ∗t −RK∗
f,tH

∗Φ∗t − ΦtHKf,tR + R, (7.A.3)

and not the diagonal elements of just

ΦtHPt|tH
∗Φ∗t + R (7.A.4)

as would be the case when ICE is not used. The situation is further com-
plicated by the fact that when ICE is used, the utility signal ΦtHx̂t|t is
correlated with vt.
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7.B Rate limit optimization

We wish to maximize the data rate in an uncoded adaptive modulation sys-
tem based on uncertain channel predictions. Based on past measurements
Y0, at time t = L the channel coefficients’ effective SNR γ0ẑL|L has the
distribution (7.2.28),

p(γ0ẑL|L|Y0, I) = χ2(γ0ẑL|L; γ0ẑL|0, γ0σ
2
pf ), (7.B.1)

and the predicted SNR values γ0ẑL|0 are frequency distributed according to
(7.2.29),

p(γ0ẑL|0|γ0σ
2
p, I) = χ2(γ0ẑL|0; 0, γ0σ

2
p), (7.B.2)

where we for clarity have conditioned on γ0σ
2
p, although γ0σ

2
p is given by the

model, i.e. the prior information I. Above, γ0 = S/(Sσ2
f + 1), where S is

the average symbols energy and we have assumed that the thermal noise and
interference has unit variance. The three variances σ2

f , σ2
pf , and σ2

p are the
error variance for the filtered estimates, the variance for the future filtered
estimate, and the variance of the channel predictions, respectively. They are
obtained from the Kalman filter.

Data rate maximization is carried out by optimizing the levels of the
predicted SNR at which the modulation formats are switched. Here we as-
sume that the modulation formats are BPSK, QPSK, 16QAM, and 64QAM.
Defining

f(S, b0, b1, b2, b3) =

J−1∑
j=0

m̄j

∫ bj+1

bj

p(γ0ẑL|0|γ0σ
2
pI)d(γ0ẑL|0), (7.B.3)

we want to maximize the rate f(S, b0, b1, b2, b3) with respect to the integration
limits {b0, b1, b2, b3} and the transmitted energy S subject to a fixed value
Ptgt on the bit error rate (7.2.38). This constraint can be expressed as

g(b0, b1, b2, b3) =

J−1∑
j=0

m̄j

∫ bj+1

bj

(Pp,j(γ0ẑL|0, γ0σ
2
pf)− Ptgt)p(γ0ẑL|0|γ0σ

2
p, I)d(γ0ẑL|0) = 0,

(7.B.4)

where

Pp,j(γ0ẑL|0, γ0σ
2
pf ) =

∫ ∞

0

Pb,j(γ0ẑL|L)χ2(γ0ẑL|L; γ0ẑL|0, γ0σ
2
pf )d(γ0ẑL|L),

(7.B.5)
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and m̄j is the number of bits per symbol for modulation format j. Here,
m̄j ∈ {1, 2, 4, 6}. For the bit error rate expressions Pb,j(γ) for the respective
modulation formats, we here use [71]

Pb,j(γ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.5 erfc
(√

γ
)

j = 1,

0.5 erfc
(√

γ/2
)

j = 2,

1−
(

1−
(

1− 1√
2
m̄j

)
erfc

(√
3
2

√
γ

2
m̄j
−1

))2

m̄j
j ∈ {3, 4}, γ > γc.

(7.B.6)

For j ∈ {3, 4} we use the above expression only above a certain cutoff SNR γc,
since they show poor accuracy for low SNRs. We here need to marginalize bit
error probability expression over χ2-distributions that may have considerable
support at low SNRs, making it crucial to use bit error rate expressions that
are accurate for any SNR. For SNRs below the cutoff value γc, which we set to
15 dB for 16QAM and 22 dB for 64QAM, we use numerical approximations
based on tables acquired by simulation. When γ < −30 dB, we set Pp,j(γ) =
0.5.

According to the method of Lagrange multipliers, we solve the set of
equations ∇b0,b1,b2,b3,λ(f + λg) = 0:

Pp,0(b0, γ0σ
2
pf) = Ptgt − λ−1, (7.B.7)

(m̄j−1 − m̄j)
−1(m̄j−1Pp,j−1(bj , γ0σ

2
pf)− m̄jPp,j(bj , γ0σ

2
pf))

= Ptgt − λ−1, j = 1, . . . , J − 1, (7.B.8)

g(b0, b1, b2, b3) = 0. (7.B.9)

Since the channel is in outage when the predicted SNR is below b0, the
transmitted energy S must be adjusted with respect to this lower switching
level. Therefore we first optimize b0 and S jointly:⎧⎨

⎩
∫∞

0
Pb,0(γ)χ2

(
γ; b0,

S
Sσ2

f
+1

σ2
pf

)
dγ = Ptgt − λ−1,

S
∫∞

b0
exp

(
−γ̂

/
Sσ2

p

Sσ2
f
+1

)/
Sσ2

p

Sσ2
f
+1

= 1,
(7.B.10)

where the integral in the second equation is the fraction of time when the
system is not in outage. Once the solution to this system of equations has
been found, we can form γ0 = S/(Sσ2

f + 1). After that, equations (7.B.8)
and (7.B.9) are solved.





Chapter 8
Studies on measured channels

8.1 Introduction

In this chapter, we conduct a number of studies on measurements of wideband
fading MIMO radio channels at 2.66 GHz. We estimate model parameters
from noisy and noise-free measurements, and study how the acquired channel
models can be used in a Kalman filter for channel estimation and prediction.
The aim is to see to what extent channel model parameters can be estimated
in a realistic, noisy setting, since in a real system, good estimates of channel
model parameters are required for efficient channel estimation/equalization
and prediction. The chapter is organized as follows.

In Section 8.2, details regarding the recording of the channels are given.
Section 8.3 is concerned with the modelling of a channel’s time dynamics.
In Chapter 4, it was suggested that a fading channel coefficient be modelled
by an autoregressive (AR) model of fixed order. The following aspects of
the AR-model must be considered: What model order should be used? Over
how long a time period can static model parameters be used? What methods
should be used to acquire the AR model parameters? How do we handle noisy
measurements when it comes to estimating AR parameters? These questions
and more are treated in Section 8.3.

In Section 8.4, we complement the results in Section 8.3 by also studying
estimation and prediction of parallel subchannels and simultaneous inputs
from multiple transmit antennas. We study how performance depends on
SNR. When multiple inputs are tracked, we also consider whether it suffices
to estimate AR parameters from one of the inputs and then use the same
model for all inputs, or whether individual parameter estimation has to be
used for each input.

In this thesis we use Kalman filters to track fading radio channels in
a number of scenarios. When models with static parameters are used to

191
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represent the fading characteristics, the Kalman filter will settle to a periodic
state, drastically reducing the numerical complexity compared to the non-
stationary case, as was shown in Chapter 4. The rate at which the filter
converges to periodicity will largely impact the energy consumption of the
filter, since the updating of large covariance matrices can be turned off once
periodicity has been reached. In Section 8.5, we study the convergence rate
for filters operating on some typical channel models.

Section 8.7 concludes the Chapter.

8.2 Measurements

The measurements that we will study here were conducted by Ericsson Re-
search in November 2008 in the Stockholm suburb Kista. The measurements
consist of up to 480 seconds long channel data series of a fading 8-by-4
MIMO-OFDM channel. We denote such a series a route. A route is divided
into at most 90000 slots of 5.33 ms each. The slots, in turn, are divided into
8 frames of 667 μs each. For each transmitting antenna element, measure-
ments are taken only during one frame in each slot. The frame consists of 9
OFDM symbols, and an OFDM symbol has 66.7 μs for data and 7.41 μs for
the cyclic prefix, the latter of which is removed after reception. The cyclic
prefix admits a difference in propagation path lengths of just above 2 km.
The OFDM symbol duration of 66.7 μs gives a subchannel bandwidth of 15
kHz, which is the same as in the LTE standard.

Eight roof-mounted transmitting antenna elements (AE) and four receiv-
ing AEs mounted on the roof of the measuring vehicle were used. Short
channel snapshots were taken once per slot (5.33 ms). A snapshot is 1296
samples long (excluding cyclic prefix) and sampled at 19.44 MHz in the base-
band, hence representing 66.7 μs. To avoid inter-carrier interference, each of
the eight channels sampled at each receiving AE used a dedicated frame in
the slot.

The stationary transmitting equipment and the receiving equipment in
the measurement vehicle were initially synchronized by rubidium clocks to
high accuracy. Training symbols known to the receiver were transmitted
from the transmitting AEs. Apart from being spread out in time, the trans-
missions were also separated in frequency, so that each transmitting AE used
only every eighth subchannel for transmission, i.e. the channels were sam-
pled once per 120 kHz. After the channel snapshots were collected from the
mobile receiving AEs, the cyclic prefixes were removed and the remaining
parts Fourier transformed and element-wise divided by the known sequence
of symbols, yielding the complex channel coefficients that we here consider
to be noiseless.
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The recorded complex baseband channel coefficients {hf,t}, where t is the
time index and f is the frequency index, then consists of 32 matrices (one
per transmitter–receiver antenna pair), each of dimension 1296/8=162 pilot
subchannels and a very large number of OFDM symbols.

The measured channels discussed here have been studied perviously, with
respect to direction-of-arrival and polarization diversity [95], and the po-
tential benefits of cooperative MIMO [96]. In this chapter, we study the
time-dynamical properties of the measured channels, as well as the prospect
of tracking several channels at the same time.

Because of the sparse sampling, the raw channels will be interpolated in
this study, both in time and in frequency, by upsampling factors of the user’s
choice. Interpolation by 2D-DFT, then zero padding, then 2D-IDFT is used,
meaning that the interpolated channel matches the original exactly at the
sampling points, and that no frequency information is added.

An important aspect to consider when dealing with modelling of measured
channels is how often the channel model needs to be updated. In this chapter
we will use channel models that are held constant over short periods of time.
The length of such a period is denoted an evaluation segment and we talk
about segmentation of the measured channel. Each evaluation segment is
preceded by a training segment. Here we will let training segments and
evaluation segments have the same lengths. The segmentation will be on the
order of seconds or fractions of a second.

8.3 Time dynamics

In Chapter 4, it was suggested that a fading channel coefficient ht be modelled
by an autoregressive (AR) model

ht + a1ht−1 + . . . + akht−k = ut, (8.3.1)

where k is the model order, {a1, . . . , ak} are the AR parameters, and ut is
the process noise of variance σ2

u that excites the process. It was pointed
out that the model order impacts the numerical complexity of the channel
estimator/predictor. This fact should be considered when choosing the model
order. Furthermore, two approaches for choosing the AR parameters were
suggested, that were both motivated by the presence of only vague prior
information about the fading characteristics of the channel. One produces
a flat Doppler spectrum, based on the knowledge that an upper limit to
the Doppler spectrum exists and is known. The other produces a Doppler
spectrum resembling the Jakes’ spectrum, based on the knowledge that there
is no line-of-sight between transmitter and receiver, and that one or several
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independent scatterers are distributed at unknown angles around the mobile
unit.

When actual channel measurements, albeit noisy, are available, channel
models based on more cogent prior information may be used. Assuming first
that noise-free channel measurements are available, we define the vector of
AR parameters

a = [a1, . . . , ak]
T , (8.3.2)

and the set of all past channel coefficients

ht = {ht−1, . . . , h0}. (8.3.3)

Equipped with the model (8.3.1) and assuming that the model order k and
the process noise variance σ2

u are known, the correct Bayesian procedure to
infer a channel coefficient ht from past coefficients ht would be to assign a
prior distribution to a and then marginalize over the unknown parameters
in a:

p(ht|ht, I) =

∫
p(ht|ht, a, I)p(a|ht, I)da. (8.3.4)

If both distributions in the integral are Gaussian, then a closed form expres-
sion for p(ht|ht, I) may easily be found. The first distribution follows directly
from (8.3.1):

p(ht|ht, a, I) = CN (ht; μh, σ
2
u) (8.3.5)

with μh = −[ht−1 . . . ht−k]at. The second, the AR parameter distribution
p(a|ht, I), may be a prior distribution p(a|I) given by some principle for
deriving prior distributions (see Section 3.2.3). Alternatively, if the AR pa-
rameters at are time-varying and correlated with ht, then its pdf should be
propagated as time evolves. For example, assuming that a state-space model
well represents the dynamics of at,

at+1 = Fat + Gwt,

ht = −[ht−1 . . . ht−k]at + ut,
(8.3.6)

for some matrices F and G, and some variance for the process noise wt, the
distribution p(at|ht, I) is calculated by means of the Kalman filter recursions.

This is to say: if noise-free channel measurements ht would be available,
then we may marginalize over the unknown AR parameters, hence conducting
optimal inferences about ht without making unsupported assumptions about
a. However, if noise-free measurements are not present, then the expected
value −[ht−1 . . . ht−k]at of ht cannot be formed, neither in the marginal dis-
tribution p(ht|ht, a, I) nor in the state-space model for at. In this case, which
is the case we are facing in real scenarios, marginalization over a is compu-
tationally prohibitive. It is then necessary to fixate the AR parameters by
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choosing a point estimate â of a, so that (8.3.1) is linear in ht. A state-space
model of the fading radio channel(s) can then be constructed according to
the framework outlined in Chapter 4. Then, the channel ht may be esti-
mated and/or predicted with a Kalman filter. It is therefore necessary to
have efficient methods for estimating model parameters.

This section is devoted to various aspects of AR parameter estimation,
such as model order selection, parameter estimation, estimation based on
noisy data, subsampling, and model stationarity. We conduct a number of
experiments on a measured channel route of about 8 minutes length. In
this section we are only interested in the time dynamics of the channel.
Therefore, we study a single subchannel. In the various experiments that
will be conducted, we use the following baseline setup as a standard case
with which we compare when evaluating alternative settings:

· SNR γ=10 dB

· upsampling factor (in time): 16, giving a pilot spacing of ∼0.33 ms

· segmentation N=1600 samples ≈ 0.5 seconds

· model order k=4

· number of subchannels used for AR parameter estimation: c = 1

· number of subchannels used in the evaluation process: w = 1

· prediction range L=4 samples ≈ 1.33 ms

· velocity: maximum 30 km/h

· noise-free channel measurements are used in the training segment

We should note the following: using a point estimate of a instead of the
full pdf in (8.3.1) means that information about a is discarded. Desidera-
tum IIIb in Section 3.2.1 is therefore violated. We are forced to do this for
computational reasons. Since optimality has then already been abandoned,
seeking an optimal strategy for finding model order and AR parameters is
futile and is by no means what we seek to do here. The experiments below
are merely empirical studies of specific cases. The conclusions that we draw,
although based on a large data set, may or may not have validity outside the
specific situations investigated.

When conducting an experiment, we loop over all channel measurements
in the entire measurement route (for one subchannel). The route is segmented
into evaluation segments. Each evaluation segment is preceded by an equally
long training segment which is used for AR parameter estimation. Before the
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parameter estimation takes place, the evaluation segments are rescaled to an
SNR of the experimenter’s choice. Each training segment is also rescaled,
with the same scaling factor as its corresponding evaluation segment, so that
also all training segments over the entire route have approximately the same
SNR.

Once the AR parameters have been estimated, they are used to construct
a state-space model representation of the fading channel. This model is then
used by a Kalman filter to calculate filtered channel estimates and predictions
for the evaluation segment.

In the experiments, we set the noise variance to 0 dB, so that the SNR γ is
also the channel power. We will calculate channel estimates and predictions
based on acquired AR models. The quality of these estimations and predic-
tions are evaluated with respect to normalized mean square error (NMSE),
that is

N−1
∑N−1

t=0 |ht − ĥt|t|2
γ

, (8.3.7)

when evaluating estimating performance, where ĥt|t is a filtered estimate, or

(N − L)−1
∑N−1

t=L |ht − ĥt|t−L|2
γ

, (8.3.8)

when evaluating prediction performance, where ĥt|t−L is a prediction. In
the equations above, N is the length of the evaluation segment, and t = 0
here marks the beginning of an evaluation segment. The parameter γ is the
chosen SNR. Alternatively, some SNR estimate γ̂ may be used in place of γ
in (8.3.7) and in (8.3.8).

We will also compare the experimental NMSE values with theoretic NMSE
values that would be expected if the used model is an accurate description
of the channel. Details of how to calculate theoretic NMSEs can be found in
Section 4.3.

NMSE performance is plotted versus measured SNR, which we here define
as the mean value of the squared envelope of the training segment. Since it
is the evaluation segment that is scaled to have an exact SNR of γ, and the
training segment is scaled by the same scaling factor, the measured SNR will
differ from the SNR target due to the variability of the fading channel. It
will be approximately, but not exactly, γ, as will be clear from the figures.

When plotting NMSE results, we also plot performance boundaries for
channel estimation and prediction. For channel estimation, the boundary
is NMSE = (γ + 2)−1. It was shown in Section 5.3.4 that this boundary
guaranties that the estimation error decreases the total perceived SNR by at
most 3 dB. For channel prediction, we use a performance boundary of -10 dB.
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In Section 6.5.1, it was argued that prediction NMSE below this level will
have a very limited impact on link adaptation and scheduling performance.

8.3.1 Parameter estimation method

The first issue to consider is how to estimate the AR parameters a in (8.3.1)
from N channel measurements, where N is the length of a training segment.
Here we evaluate parametric methods and set up an overdetermined system
of equations

Aa = b. (8.3.9)

A point estimate â is then found by least squares by solving for â in

(A∗A)â = A∗b, (8.3.10)

where (·)∗ indicates conjugate transposition. We first assume that noise-free
channel measurements are available. If, for example, N = 100 and the model
order is k = 4, we may construct

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
h0 0 0 0
h1 h0 0 0
h2 h1 h0 0
h3 h2 h1 h0

h4 h3 h2 h1
...

h98 h97 h96 h95

h99 h98 h97 h96

0 h99 h98 h97

0 0 h99 h98

0 0 0 h99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0

h1

h2

h3

h4

h5
...

h99

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.3.11)

leading to the autocorrelation or the Yule-Walker method if the part above
and below the dashed lines are included, and the covariance method if only
the parts in between the dashed lines are incorporated.

If the autocorrelation method is used, then A∗A becomes an estimate of
the channel’s autocorrelation matrix,

(A∗A)[i, j] = r̂(i− j), (8.3.12)

where

r̂(τ) =

{ ∑N−1−τ
l=0 h∗l hl+τ , τ ≥ 0

r̂∗(−τ), τ < 0,
(8.3.13)
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is a “biased” estimate of the autocorrelation for ht. Since A∗A is then
Toeplitz, the system (8.3.9) can be solved with the Levinson recursions.

Note however, that the autocorrelation method applies windowing to the
data, explicitly assuming that ht = 0 when t < 0 and t ≥ N . This assumption
is not only unsupported, but plainly wrong. But again, we must point out
that using a point estimate of the channel model parameters in the channel
estimation/prediction algorithm is by necessity non-optimal. The viability
of an AR parameter point estimation method can only be measured through
experimentation.

The covariance method can be extended to the modified covariance method
by adding another N − k rows to the original N − k rows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h3 h2 h1 h0

h4 h3 h2 h1
...

h98 h97 h96 h95

h∗1 h∗2 h∗3 h∗4
h∗2 h∗3 h∗4 h∗5

...
h∗96 h∗97 h∗98 h∗99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h4

h5
...
h99

h∗0
h∗1
...
h∗95

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8.3.14)

While the covariance method minimizes the squared sum of the forward one-
step prediction errors, the modified covariance minimizes the total squared
sum of both the forward and the backward prediction errors [53].

We evaluate the autocorrelation method, the covariance method, and the
modified covariance method on the baseline example, see Figure 8.1. Both es-
timation and prediction performance are plotted for the respective methods.
Black dots indicate experimental results, and grey rings indicate theoretical
values, calculated as described in Section 4.3. Each dot/ring corresponds to
one evaluation segment. As can be seen from the figure, the autocorrelation
method performs slightly better than the other methods, both in terms of
estimation and in terms of prediction. Also, the agreement between theoret-
ical and experimental values is best for the autocorrelation method. There
is virtually no difference in performance between the covariance method and
the modified covariance method.

We also study spectra produced by each method and compare them with
the periodogram for the evaluation segment. See Figure 8.2, which illus-
trates spectra obtained with the respective methods, together with the peri-
odogram, for an arbitrary segment of the measurement route. Notably, the
two covariance methods will generally produce spectra that better conform
to the periodogram of the signal than does the autocorrelation method (this
is especially evident when studying an animation over several segments).
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Figure 8.1: NMSE performance for channel estimation (left figures) and prediction
(right figures) versus measured SNR, with simulation settings as given by the
baseline setup. Upper figures illustrate results for the autocorrelation method.
Middle figures illustrate results for the covariance method. Lower figures illustrate
results for the modified covariance method. The solid curve is the performance
criterion limit (5.3.10) for channel estimation, given in Section 5.3.4. The dashed
line is the performance criterion limit -10 dB for channel prediction, motivated in
Section 6.5.1. Black dots indicate experimental results, whereas grey rings indicate
theoretic results.



200 8.3. Time dynamics

�0.3 �0.2 �0.1 0.0 0.1 0.2 0.3
�60

�50

�40

�30

�20

�10

0

Normalized frequency

N
or

m
al

iz
ed

po
w

er
�d

B
�

Figure 8.2: Spectra for an arbitrary evaluation segment for the baseline setup.
The solid grey curve is the periodogram for the segment. Non-solid curves show
spectra for the respective methods: the autocorrelation method (dashed curve),
the covariance method (dash-dotted curve), and the modified covariance method
(dotted curve). All curves have been normalized to have a maximum value of 0 dB.

In terms of pole placement, the covariance methods place poles closer to the
unit circle, which generates more distinct spectral peaks in the spectrum. Al-
though this may produce a truthful spectrum, it seems as though the resonant
poles yield an overmodelling of the fading, which produces bad NMSE re-
sults and gives a poor agreement between theoretic and experimental NMSE
values.

8.3.2 Model order

The model order k of the AR model (8.3.9) may be estimated from previ-
ous measurements. Common methods for model order selection is Minimum
Description Length (MDL) [10] and the Akaike Information Criterion (AIC).
In this work, we are primarily interested in finding a model order that is
able to well represent the fading environment in all sorts of settings. The
baseline example uses a model order of 4. Here we reiterate the baseline ex-
periment but with model order k = 6. See Figure 8.3, which displays NMSE
results given by the autocorrelation method. The performance improvement
is minute compared with the baseline. The reason for this can be discerned
in Figure 8.4, which shows spectra for all three methods for model order 6.
While the spectra for the covariance methods do have extra peaks due to the
new poles in the model, these do not contribute to new detail and increased
resolution in the spectra. Furthermore, the autocorrelation method shows
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Figure 8.3: NMSE performance for channel estimation (left figure) and predic-
tion (right figure) versus measured SNR, with simulation settings as given by the
baseline setup, except that the model order is here k = 6. The autocorrelation
method was used to acquire AR parameters. The solid curve is the performance
criterion limit (5.3.10) for channel estimation, given in Section 5.3.4. The dashed
line is the performance criterion limit -10 dB for channel prediction, motivated in
Section 6.5.1. Black dots indicate experimental results, whereas grey rings indicate
theoretic results.

hardly any difference at all between the spectra for k = 4 and k = 6. We
therefore conclude that, save for rare exceptions, a model order of 4 should be
sufficient to capture significant details of the fading behaviour in the channel
examined here.

8.3.3 Subsampling

The parameter estimation methods described in Section 8.3.1 find AR pa-
rameters that produce small one-step estimation errors. But in the predic-
tion case, we are here interested in having a small L-step prediction error,
where L is the prediction range. Using a model that works well for ones-step
prediction does not guarantee good L-step performance. This is especially
evident when the channel is slowly fading. To make our point, we change
the setting of the oversampling factor in the baseline example from 16 to 64.
This has the effect of reducing the velocity from a top speed of 30 km/h,
to a maximum value of about 7.5 km/h (pedestrian speed). To make a fair
comparison, we also increase the prediction range from 4 to 16. Figure 8.5
shows NMSE results for this case. Since the prediction range is the same as
in the baseline example in terms of wavelengths, while at the same time more
measurements per wavelength are acquired here, one may expect the NMSE
performance to be better in this experiment. This is indeed the case for chan-
nel estimation, as can be seen by comparing Figure 8.5 to the upper figures
in Figure 8.1. Channel prediction, on the other hand, performs worse than
the baseline experiment. The reason for this is that the parameter estima-
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Figure 8.4: Spectra for an arbitrary evaluation segment for the baseline setup,
except that the model order is here k = 6. The solid grey curve is the periodogram
for the segment. Non-solid curves show spectra for the respective methods: the au-
tocorrelation method (dashed curve), the covariance method (dash-dotted curve),
and the modified covariance method (dotted curve). All curves have been normal-
ized to have a maximum value of 0 dB.
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Figure 8.5: NMSE performance for channel estimation (left figure) and predic-
tion (right figure) versus measured SNR, with simulation settings as given by the
baseline setup, except that the oversampling factor is here 64 and the prediction
range is 16. The autocorrelation method was used to acquire AR parameters. The
solid curve is the performance criterion limit (5.3.10) for channel estimation, given
in Section 5.3.4. The dashed line is the performance criterion limit -10 dB for
channel prediction, motivated in Section 6.5.1. Black dots indicate experimental
results, whereas grey rings indicate theoretic results.
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tion methods based on the one-step predictions cannot resolve details in the
channel’s spectrum, which is now very narrow due to the high oversampling
factor.

To remedy this, an AR model based on the sub-sampled channel may be
used:

ht + α1ht−s + α2ht−2s . . . + αkht−ks = wt, (8.3.15)

where s is the subsampling factor that dictates the separation between chan-
nel measurements in the model and wt is a white noise. The AR parameters
α = {α1, . . . , αk} are found as before, by setting up an overdetermined sys-
tem of equations (8.3.9), with α in place of a, and then solve with least
squares with respect to α. See Appendix 8.A for an example.

Since the channel estimator/predictor filter will be operating on the orig-
inal, non-subsampled, measurements and not on the sub-sampled data, the
acquired AR model must be converted to the faster sampling domain. The
poles {π1, . . . , πk} of the sub-sampled model (which can be calculated from
the AR parameters α) are here converted to poles {p1, . . . , pk} for the full-
sampled model through the transformation

pi = π−s
i , 1 ≤ i ≤ k, (8.3.16)

where s is the subsampling factor. As described in Channel 4, channel es-
timates and predictions can be produced by a Kalman filter based on a
multiple-input multiple-subchannel state space model. The state space model
is constructed so that the state transition matrix F is diagonal with the poles
{pi} of the channel model(s) along its diagonal. Channel predictions ĥt+L|t
are calculated through ĥt+L|t = HFLx̂t|t, where x̂t|t is the filtered state es-
timate and H is a matrix in the state space model. By choosing the poles
as in (8.3.16), FL becomes diagonal with the subspaced poles {πi} along its
diagonal. We expect that the L-step prediction NMSE should then be low,
since the subspaced poles were adjusted to produce a small prediction error
for precisely this prediction horizon.

We now set the sub-sampling factor to s = 16 so that it matches the
prediction range L, and reiterate the experiment, see Figure 8.6. Evidently,
the prediction NMSE performance is raised considerably as compared to
the experiment where sub-sampling was not used. We conclude that sub-
sampling is important in slow fading scenarios. When the fading is faster,
i.e. in vehicular velocity scenarios with the investigated carrier frequency,
we have not seen any pronounced advantage with using sub-sampling. The
importance of sub-sampling has also been pointed out in [4] and in [6].
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Figure 8.6: NMSE performance for channel estimation (left figure) and predic-
tion (right figure) versus measured SNR, with simulation settings as given by the
baseline setup, except that the oversampling factor is here 64 and the prediction
range is 16. The autocorrelation method was used to acquire AR parameters. In
the parameter acquisition, the regressors were subsampled by a factor 16. The solid
curve is the performance criterion limit (5.3.10) for channel estimation, given in
Section 5.3.4. The dashed line is the performance criterion limit -10 dB for channel
prediction, motivated in Section 6.5.1. Black dots indicate experimental results,
whereas grey rings indicate theoretic results.

8.3.4 Parameter estimation in noise

So far, we have made the idealizing assumption that noise-free channel mea-
surements are available in the training segments during which AR param-
eter estimation takes place. We here consider AR parameter estimation in
the baseline example when complex-valued white noise of unit variance is
added to the channel measurements. Denote by Ã the matrix A in (8.3.11),
(8.3.14), or (8.A.1), but with the noise-free channel coefficients replaced by
noisy measurements. Then we may calculate

A∗A ≈ Ã∗Ã− nI, (8.3.17)

where n is the number of non-zero elements in each column in A, which
depends on the size N of the training segment, the model order k, and the
oversampling factor s. For the autocorrelation method, n = N ; for the
covariance method, n = N − ks; and for the modified covariance method,
n = 2(N − ks). Equation (8.3.10) can now be approximated as

(Ã∗Ã− nI)â = Ã∗b, (8.3.18)

from which we find estimates â of the AR parameters1. Note that it holds
that A∗b ≈ Ã∗b because of the whiteness of the noise. Once â has been

1Approximately the same solution is obtained by low-pass filtering the noisy measure-
ments with a filter with cut-off frequency at the maximum Doppler frequency and using
(8.3.10)
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Figure 8.7: NMSE performance for channel estimation (left figure) and predic-
tion (right figure) versus measured SNR, with simulation settings as given by the
baseline setup, except that noisy regressors are used during the AR parameter ac-
quisition. The autocorrelation method was used to acquire AR parameters. The
solid curve is the performance criterion limit (5.3.10) for channel estimation, given
in Section 5.3.4. The dashed line is the performance criterion limit -10 dB for
channel prediction, motivated in Section 6.5.1. Black dots indicate experimental
results, whereas grey rings indicate theoretic results.

found, the corresponding poles can be calculated. Unstable poles are reflected
in the unit circle.

Figure 8.7 displays NMSE performances for the autocorrelation method
when noisy regressors are used for the parameter estimation. As expected,
performance is considerably impeded by the noise, compared with the upper
figures in Figure 8.1. When the regressors are noisy, the spectra for the
respective methods typically feature random bumps, as can be seen in Figure
8.8.

8.3.5 Estimation on multiple subchannels

The quality of AR parameter estimation can be improved upon by taking
into account several parallel subchannels in the estimation process. Denote
by Ai and bi the parameters in an equation system (8.3.9) corresponding
to a subchannel with index i. In order to take c different subchannels into
account, we construct an augmented system

A =

⎛
⎜⎝ A1

...
Ac

⎞
⎟⎠ , b =

⎛
⎜⎝ b1

...
bc

⎞
⎟⎠ , (8.3.19)

which is then used in (8.3.9) to find AR parameters. It is desirable to use
well-separated subchannels, so that they fade independently.

We study the performance for multi-subchannel AR parameter estimation
on the baseline case with noisy regressors as in Section 8.3.4. Since the size of
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Figure 8.8: Spectra for an arbitrary evaluation segment for the baseline setup, ex-
cept that noisy channel measurements were used in the AR parameter acquisition.
The solid grey curve is the periodogram for the segment. Non-solid curves show
spectra for the respective methods: the autocorrelation method (dashed curve),
the covariance method (dash-dotted curve), and the modified covariance method
(dotted curve). All curves have been normalized to have a maximum value of 0 dB.

the equation system has here increased by a factor c, the noise compensation
factor n in (8.3.17) must be multiplied by c. As can be seen by comparing
Figure 8.9 with 8.7, multi-subchannel estimation has a favourable impact on
AR parameter estimation performance when noisy regressors are used.

8.3.6 Segmentation

The segmentation of the channel determines how often the channel model
is updated. The segments must be short enough that the channel can be
considered more or less stationary over the duration of a segment, otherwise
the channel model will be outdated at the end of the segment. In the exper-
iments above we have used a segmentation of 1600 samples, corresponding
to training and evaluation segments with durations of about half a second
each. From the experiments above, it would seem that this segmentation
is short enough to capture the changing nature of the fading environment.
But can the segments be made longer, lowering the updating frequency for
the channel model? Figure 8.10 illustrates NMSE performances when the
segments are 6400 samples long (about 2 seconds). The experimental results
still comply with the criteria that we have set up for channel estimation and
prediction performance, but some points start to fall above the performance
boundaries. This indicates that while a segmentation of 0.5 seconds seem to
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Figure 8.9: NMSE performance for channel estimation (left figure) and predic-
tion (right figure) versus measured SNR, with simulation settings as given by the
baseline setup, except that c = 8 well-separated subchannels are used for AR pa-
rameter acquisition. Noisy channel measurements are used. The autocorrelation
method was used to acquire AR parameters. The solid curve is the performance
criterion limit (5.3.10) for channel estimation, given in Section 5.3.4. The dashed
line is the performance criterion limit -10 dB for channel prediction, motivated in
Section 6.5.1. Black dots indicate experimental results, whereas grey rings indicate
theoretic results.

be well on the safe side, segments of 2 seconds are sometimes too long for the
channel to be considered stationary over a segment’s duration, when trav-
elling at pedestrian or low vehicular velocities in the suburban environment
examined in the evaluation.

8.4 MIMO channels

In Section 8.3 we studied various properties of the time dynamics of a mea-
sured channel. A single subchannel was studied. In this section we estimate
and predict multiple parallel subchannels as well as simultaneous inputs from
multiple transmitting antennas.

As previously in this thesis, we use a linear discrete-time state space
model to model a vector ht of fading MIMO-OFDM channel coefficients:

xt+1 = Fxt + Gut,

ht = Hxt,

yt = Φtht + vt,

(8.4.1)

where the process noise ut, the measurement noise vt, and the initial state
x0 are zero-mean Gaussian, white, and

‖[uT
t ,vT

t ,xT
0 ]T‖2 = diag(Q,R, Π0), (8.4.2)

where Q > 0, R > 0, and Π > 0 as described in detail in Chapter 4.
The uw-vector ht holds w fading time-frequency channel coefficients from
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Figure 8.10: NMSE performance for channel estimation (left figure) and predic-
tion (right figure) versus measured SNR, with simulation settings as given by the
baseline setup, except that training segments and evaluation segments are here
about 2 seconds long. The autocorrelation method was used to acquire AR pa-
rameters. The solid curve is the performance criterion limit (5.3.10) for channel
estimation, given in Section 5.3.4. The dashed line is the performance criterion
limit -10 dB for channel prediction, motivated in Section 6.5.1. Black dots indicate
experimental results, whereas grey rings indicate theoretic results.

u transmitting antennas. These channel coefficients are “observed” in noise
through the w × uw pilot matrix Φt. It is assumed that the model only
concerns those sub-locations that hold training symbols (pilots) so that Φt

is known. Depending on the pilot patterns used, Φt potentially constructs
a superposition of channel coefficients from several transmitting antennas in
the measurement vector yt of dimension w.

From the observations yt, optimal inferences about the present channel
ht (estimation, for coherent detection) and future channel ht+L (L-step pre-
diction, e.g. for link adaptation and scheduling) can be made by using the
Kalman filter.

8.4.1 Frequency correlation

In order to model multiple parallel subchannels, the frequency correlation
between these subchannels has to be incorporated into the model. Exactly
how this is done depends on whether impulse response domain modelling or
subchannel domain modelling is used, see Chapter 4. In the former case,
the frequency domain properties of the channel model is represented by a
pulse-shaping matrix D and by a diagonal power delay profile matrix Rγ.
In this case it is necessary to estimate the number of significant taps in
the impulse response, as well as their respective delays and gains. This is
typically done by using subspace methods. See for example [9]. However, we
will not consider impulse response domain modelling here.

subchannel domain modelling, on the other hand, requires only an esti-
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mate of the subchannel covariance matrix Rh = ‖ht‖2. To find this matrix,
we start by estimating the channel autocorrelation in the frequency direction.
Based on n noisy pilot sub-symbol measurements from a particular OFDM
symbol,

yf = sfhf + vf , f = 0, . . . , n− 1, (8.4.3)

which need to be exclusively allotted to the channel that are to be modelled,
we construct the sample autocovariance in the frequency direction2

rf,y(τ) =

{ ∑n−1−τ
f=0 (s−1

f+τyf+τ )(s
−∗
f y∗f), τ ≥ 0,

r∗f,y(−τ), τ < 0.
(8.4.4)

Above, sf , hf , and vf are a known pilot sub-symbol, the unknown channel
coefficient, and complex-valued white noise of unit variance, respectively,
for a pilot-bearing subchannel with index f . We then compensate for the
influence of white noise:

rf,h(τ) = rf,y(τ)− σ2
wδ(0), (8.4.5)

where σ2
w = nσ2

v/|st|2 is the noise variance. We assume here that the variance
σ2

v of vt is known to be σ2
v = 1.

However, if the channel has a large coherence bandwidth, then the over-
all scale of rf,h(τ) will depend greatly on the fading level that the present
OFDM symbol happens to have. Therefore, rf,h(τ) will generally have the
wrong scaling. Since for an accurate frequency-domain autocorrelation rf (τ)
it should hold that rf(0) = γ, where γ is the channel’s SNR, it is appropriate
to apply the following rescaling:

rf(τ) = (γ̂/rf,h(0))× rf,h(τ), (8.4.6)

where γ̂ is a good estimate of the SNR. We turn to the topic of how to obtain
γ̂ in Section 8.4.2 below.

The toeplitz subchannel covariance matrix can now be constructed from
the rescaled sample autocovariances (8.4.6):

Rh =

⎛
⎜⎜⎜⎝

rf (0) r∗f(1) · · · r∗f(w − 1)

rf (1) rf(0)
. . .

...
...

. . .
. . . r∗f(1)

rf (w − 1) · · · rf(1) rf(0)

⎞
⎟⎟⎟⎠ . (8.4.7)

As described in Chapter 4, Rh can be used in the construction of the channel
model.

2Autocovariance estimation comes in many flavours. It is not uncommon to use so

called unbiased estimation, r
(f)
unb.(τ) = (n+ τ)−1r(f)(τ). However, the τ -dependent scaling

may result in an estimate that does not have the properties of an autocorrelation, e.g.
that r(0) should have the largest absolute value. This may eventually result in a negative
definite autocovariance matrix which gives an unstable filter.
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8.4.2 SNR

To measure the SNR, we need to measure both the noise power and the chan-
nel power. The noise power is conveniently measured on “empty” resources,
i.e. sub-locations where neither pilots nor payload is transmitted. Let Γv be
a set of such empty sub-locations. An estimate σ̂2

v of the noise power σ2
v can

then be calculated from

σ̂2
v = |Γv|−1

∑
i∈Γv

|vi|2, (8.4.8)

where vi is the noise measurement at sub-location i. The thermal noise power
can be assumed to be fairly constant over long periods of time, but due to
the time-varying nature of interference, the noise power estimate has to be
updated on a time scale of seconds.

Channel power estimation amounts to taking the mean of the squares of
a large number of samples. Similar to the noise power estimation procedure,
let Γh be a large set of pilot sub-locations that are well separated both in
time and in frequency. Construct

p̂ = |Γh|−1
∑
i∈Γh

|yi|2, (8.4.9)

where yi = sihi + vi is the noisy measurement of sub-location i bearing pilot
sub-symbol si.

Let the number of samples be |Γh| = n. If the measurements are taken
so sparsely that the {yi} are i.i.d. Gaussian with zero mean and identical
variance σ2

y , then p̂ has a χ2-distribution with n degrees of freedom. This
distribution has mean value σ2

y and variance σ4
y/n [97]. When the number of

samples n is large (say, n > 50), then p̂ is approximately Gaussian with the
aforementioned moments. Since it must hold that σ2

y = |s|2σ2
h + σ2

v , where
σ2

v is the known noise variance and we assume that the pilots have constant
modulus |s|, we can now solve for σ2

h.
However, if the channel samples are correlated, the power estimate may

exhibit bias and the convergence will generally be slow. Since the channel
taps in an OFDM channel are usually strongly correlated, a large portion of
the system bandwidth needs to be sampled over a fair amount of time in order
to get enough “diversity” to make the variance of the power estimate small.
Loosely speaking, we can only get (ΔfcΔtc)/(fbwtmeas.) degrees of freedom,
where Δfc is the coherence bandwidth of the channel (the reciprocal of the
multipath spread), Δtc is the coherence time of the channel (the reciprocal
of the Doppler spread), fbw is the total system bandwidth, and tmeas. is the
time over which the power is estimated. The time tmeas. is typically in the
order of a second.
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A good strategy is therefore to measure the channel on symbols that are
well separated both in time and in frequency, and to do this on as many sym-
bols as possible. To eliminate the influence of unknown transmitted symbols,
the measurement is best performed on pilot symbols. It should however be
noted that this does not require any pilots that are exclusively allocated for
this purpose. Pilots that a second or so ago were used in combination with
a channel model to produce channel estimates and predictions, can now also
be used for channel power estimation.

Once the noise power estimate σ̂2
v and the channel power estimate σ̂2

h have
been obtained, we calculate the SNR estimate γ̂:

γ̂ = σ̂2
h/σ̂

2
v . (8.4.10)

8.4.3 Experiment

We investigate channel estimation and prediction performance of a Kalman
filter operating on three simultaneous inputs, each input coming from one
transmitting antenna element in an antenna array. We here use the same
simulation parameters as in the baseline setup described on page 195, except
that we use a filter width (number of subchannels tracked in parallel) of
w = 4. The separation between tracked subchannels is 15 kHz. Orthogonal
pilot patterns were used. Specifically, the pilot matrix Φt is chosen as

Φt =

⎛
⎜⎜⎝

1 1 1
1 −1 1

1 1 −1
1 −1 −1

⎞
⎟⎟⎠ . (8.4.11)

Two specific points along the measurement route was selected for investiga-
tion. In one of these locations, here denoted location A, the channels have
Doppler spectra with sharp peaks, so that the channel predictor should per-
form well. At this location, the channels are frequency-selective. At the other
location, which we denote location B, the Doppler spectra are flatter, making
prediction inherently difficult. Here, the channels are almost frequency-flat.

We consider three cases for model parameter acquisition and channel es-
timation/prediction. The first case is a reference case, in which we estimate
one channel at a time, so that overlapping pilots are not used. Here, model
parameter acquisition and channel estimation/prediction are completely sep-
arated between channels. This implicates an extensive pilot overhead, be-
cause it requires that exclusive pilots are allocated for the respective inputs.
However, in location A the NMSE performance is also very good, both for
channel estimation and channel prediction, as can be seen in Figure 8.11a.
For channel estimation, we use the performance criterion (5.3.10) which guar-
anties that the SNR reduction due to channel estimation errors is reduced
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by at most 3 dB. For channel prediction, we use the performance boundary
-10 dB, motivated in Section 6.5.1. Here, all curves satisfy the performance
boundaries when the SNR is higher than 5 dB.

In the second case, separated model parameter acquisition is still used,
but we consider tracking of parallel inputs with overlapping pilots as given
by the pilot matrix (8.4.11). In both locations, tracking simultaneous inputs
causes interference between the inputs due to the frequency selectivity of the
channels, which increases the NMSE. See Figure 8.11b. Prediction perfor-
mance is still adequate, but the channel estimation performance curves fall
off, so that for high SNRs, channel estimation performance is inadequate.

In the third case we only estimate channel model parameters for one of the
three inputs, and then we use the same model for all three inputs. Since we
here consider inputs coming from the same antenna array, it is expected that
all inputs are adequately characterized by the same model. Only having to
acquire one channel model saves resources, since model parameter acquisition
requires the use of exclusive pilots. As seen in Figure 8.11c, the performance
curves are very nearly the same as those in Figure 8.11b, implying that
when parallel inputs stemming from the same antenna array are tracked, it
is sufficient to acquire only one channel model.

In coordinated multipoint (CoMP) settings, separate channel models need
to be acquired for the individual input streams, since they originate from
different base stations. This case has been studied in [86].

8.5 Filter convergence

As seen in Section 4.4, the Kalman filter recursions are computationally cum-
bersome. Although special matrix structures can be used here, alleviating
the arithmetical pressure considerably compared to the case where a general
state space model is used, the complexity is still in the order of n2, where
n = kxu is the total number of states and u, x, and k are the number
of transmitting antennas, the number of modelled channel coefficients per
transmitting antenna, and the model order used for each channel coefficient,
respectively (typically, we set x = w, where w is the filter width). In terms
of operations per second, modern processors can manage this computational
labour, but power consumption is a problem. The sheer intensity would
quickly drain the batteries in mobile terminals and might make base sta-
tion’s power consumption unacceptably high. It is therefore vital to reduce
the number of Kalman filter updates to a minimum.

The Kalman filter permits the matrices in the state space model to be
time variant. However, since scatterers surrounding mobile terminals are rel-
atively static compared to typical channel sampling periods (fractions of mil-
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Figure 8.11: Channel estimation and prediction NMSE results for two distinct
locations: one advantageous location (solid curves), and one somewhat less advan-
tageous location (dashed curves). Channel estimation NMSE performance (lower
lines) and prediction NMSE performance (upper lines) are plotted versus SNR.
Three simultaneous channels were tracked. Their respective curves nearly over-
lap. The thin solid curve is the performance criterion limit (5.3.10) for channel
estimation, given in Section 5.3.4. The thin dashed line is the performance cri-
terion limit -10 dB for channel prediction, motivated in Section 6.5.1. Three
cases for channel model parameter acquisition and channel estimation/predicion
are investigated: completely separated model and channel estimation/prediction
(a), separated model estimation but simultaneous estimation/prediction (b), and
simultaneous estimation/prediction with the same model used for all channels (c).
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liseconds), the channel model parameters will generally be constant for many
channel sample periods. This is indicated in (8.4.1) by the time-invariability
of all matrices but Φt (the pilot matrix Φt is allowed to vary on a short time
scale).

When the model matrices are constant or periodic, the error covariance
matrices computed by the Kalman filter recursions will quickly settle to a sta-
tionary or periodic state. When this happens, the error covariance matrices
will not have to be updated again until the model changes.

A central question arising when assessing the feasibility of using Kalman
filters for channel estimation and prediction is then: how quickly does the
Kalman filter converge compared to the length over which a static model can
be used to represent a fading channel?

To examine the convergence rate of the Kalman filter, we study two cases.
The first is a multi-input system of four transmitting antennas (possibly four
different users), each having an SNR of 12 dB. The filter width w is set to
4 and the four pilot patterns are orthogonal and periodic with a period of
4. The system parameters are set according to the WINNER FDD mode
(see Section 6.2 for details) and the WINNER II C2 NLOS channel model is
used (see Section 2.3.2). A Doppler spectrum resembling the Jakes’ Doppler
spectrum is used. The normalized Doppler frequency is set to 0.06, which for
example corresponds to having pilot OFDM symbols at every 12:th OFDM
symbol (345.6 μs) when the carrier frequency is 3.7 GHz and the velocity is
about 50 km/h. The estimation performance is expressed in terms of NMSE
for the filtered channel estimates, but the actual numerical values are not
interesting here. Instead we study the convergence rate versus number of
iterations (recursion updates). As is clear from Figure 8.12, the MIMO filter
has converged after about 60 iterations.

We also consider a SISO system where the pilot pattern is varied over
time with a period of 12. The system parameters are set as in the above
example, but we here consider the input from a single transmitting antenna.
For most of the time, empty pilots (i.e. the pilot symbols have no energy) are
transmitted. Only at two occasions are non-zero pilots transmitted: at sub-
channel 1 at time 10, and at subchannel 4 at time 12. The original intention
of this experiment was to investigate how pilots should be distributed among
payload symbols in a certain kind of block allocation scheme (see Chapter 5),
but again, here we are only interested in convergence rates. Because of the
asymmetric pilot placement, as is seen in Figure 8.13, the NMSE curves differ
slightly between the four subchannels and they have a jagged appearance.
At time t = 10, when the first pilot arrives, the NMSE drops down to about
-12 dB. The NMSE is further improved slightly when the next pilot arrives
at t = 12. After that, the NMSE increases until the first pilot in period two
appears. After about three periods, the SISO filter with time varying pilots
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Figure 8.12: Channel estimation NMSE performance of a Kalman filter with width
w = 4 operating on four simultaneous input streams using orthogonal and cyclic
pilot patterns. Upper curves show performance results for the outer subchannels
for th respective inputs. Lower curves show results for inner subchannels. Because
of the way the pilots were chosen, the amount of energy that leaks from other inputs
will differ slightly between inputs, which is why multiple curves are present.

settles to a periodic state.

In the above examples of multi-channel tracking and irregular pilot pat-
terns, the Kalman filter converged in only a few tens of iterations. The con-
vergence was this fast despite the fact that the Doppler spectrum featured
sharp spectral components that causes the filter to converge more slowly than
it would with a flat Doppler spectrum. Adding some margin, we therefore
draw the conclusion that one can safely assume the Kalman filter to converge,
also in fairly complicated cases, in at most a couple of hundred iterations.

8.6 CoMP complexity case study

In Section 8.3.6 we saw that it is in many cases sufficient to update the
channel model twice per second. If the filter converges in a hundred itera-
tions, this means that the computationally demanding state estimation error
covariance matrices in the Kalman filter need to be updated 200 times per
second and filter band. If the channel models and pilot configuration is the
same between different filter bands, the covariance matrices need only be
updated for one filter band.

To illustrate the resulting impact on the numerical complexity of Kalman
predictors operating on multiple inputs in a CoMP setting, we consider a
system with a total bandwidth of 20 MHz, divided into 1296 subchannels at
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Figure 8.13: Channel estimation NMSE performance of a Kalman filter with width
w = 4 operating on a single input. An asymmetric pilot pattern with period 12
was used. Upper and lower curves show the result for outer and inner subchannels,
respectively.

15 kHz bandwidth each. Every third subchannel holds pilots, so that a total
of 432 subchannels are to be tracked. Assuming a filter width of w = 4, this
means that 108 Kalman filters need to operate in parallel. We assume that
u simultaneous inputs should be tracked, but that exclusive pilots are used
so that separate Kalman filters can be run on each input, as discussed in
Section 6.6. Guided by the results obtained in Section 8.3.6, we here assume
that new channel models need to be acquired once per second. The same
channel model can be used over the entire bandwidth but different models
need to be employed for the different inputs. The spacing between pilots, tp,
is here set to 0.25 ms, so that each filter has to be updated 4000 times per
second. It is further assumed that a Kalman filter on average converges in
60 iterations. We set the model order to k = 4 so that the number of states
is n = wk, and the prediction range to L = 8 steps. The resulting number
of complex arithmetic operations required per second versus the number of
tracked inputs u is presented in Table 8.1. For the complexity calculations we
have used equation (4.4.1). We have also used the fact that a multiplication
M1M2 of two matrices M1 ∈ Cn1×n2 and M2 ∈ Cn2×n3 requires n1n2n3

complex operations. If the rows of M1 and/or the columns of M2 contain
only c non-zero elements each, then the complexity is n1cn3. Further, if the
product is known to be Hermitian, then only half of the arithmetic operations
need to be carried out.

The required number of complex arithmetic operations per second as a
function of the number of simultaneously tracked inputs u is displayed in
Figure 8.14. The figure shows that in the investigated case, the complexity
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Table 8.1: Number of arithmetic operation per second required to cover the entire
20 MHz bandwidth, tracking u inputs at once. The calculations are divided into
four categories: Filter update refers to the updating of the whole filter. Covariance
rescaling refers to the fact that the state estimation error covariance matrix Pt|t
and the state prediction error covariance matrix Pt+L|t have to be updated to
HPt|tH∗ and HPt+L|tH∗, respectively. Estimate update refers to the updating of
the state estimates x̂t|t and the state predictions x̂t+L|t. Estimate rescaling refers
to the fact that the state estimation and state prediction have to be transformed
to channel coefficients ĥt|t = Hx̂t|t and ĥt+L|t = Hx̂t+L|t.

type number of complex arithmetic operations per second
filter update 60u

(
n2

(
w
2

+ 3
2

+ L−1
2

)
+n

(
w2 + 3w

2
+ 3 + (L− 1)

)
+ w3

6

)
covariance rescaling 60u(2(nwk + w2k/2))
estimate update 4000 · 108u(u(w + 2) + u)
estimate rescaling 4000 · 108u(2wk)

is totally dominated by the updating of estimates and predictions.

8.7 Concluding remarks

This chapter has been devoted to the study of various properties of measured
broadband MIMO channels. Channel estimation and prediction performance
using a Kalman filter has been evaluated in terms of the normalized mean
square error (NMSE). The time dynamics of the measured channels were
studied and it was found that they could be adequately represented by an
AR model of order 4. For the specific measurement studied here, a higher
model order did not contribute to improved estimation and prediction perfor-
mance. Among the evaluated methods for finding the AR model parameters,
it was found that the autocorrelation was the best alternative. A method for
compensating for the negative influence of noise when estimating model pa-
rameters was suggested. Also, it was shown that using several uncorrelated
subchannels in the model estimation process can remedy the problem with
noisy regressors somewhat. When the channel fades slowly, we showed that
estimation and prediction is improved by using a sub-sampled AR model.
Piecewise constant channel models were used. We found that the channel
models could be held constant for att least 0.5 seconds.

For the study of multiple subchannels tracked in parallel, we outlined
methods for estimating the SNR and frequency correlation properties. We
evaluated channel estimation and prediction for four parallel subchannels and
three simultaneous inputs coming from antenna elements in the transmitting
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Figure 8.14: The number of complex arithmetic operations that has to be carried
out per second, as a function of the number of simultaneously tracked inputs u.
Grey curve shows the complexity for the sum of all four types of update in Table
8.1. Black dotted curve shows the complexity for just the estimate update and
rescaling. The curves almost completely overlap, meaning that the updating of
covariance matrices has a negligible impact on the total numerical complexity.

antenna array. The main conclusion was that when all inputs originate from
the same antenna array, then the same channel model can be used for all
inputs.

Finally, we examined the convergence rate of the Kalman filter used for
channel estimation and prediction. We found that the filter usually converges
in a few tens of iterations, even in cases where the Doppler spectra have strong
spectral components and when simultaneous inputs are tracked.
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8.A Subsampling

From the sub-sampled AR model (8.3.15), an over-determined set of equa-
tions can be set up. For example, with the sub-sampling factor s = 3, the
model order k = 4, and the size of the measurement series N = 100, we have

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0

h1

h2

h3 h0

h4 h1

h5 h2

h6 h3 h0

h7 h4 h1

h8 h5 h2

h9 h6 h3 h0

h10 h7 h4 h1

h11 h8 h5 h2

h12 h9 h6 h3
...

h96 h93 h90 h87

h97 h94 h91 h88

h98 h95 h92 h89

h99 h96 h93 h90

h97 h94 h91

h98 h95 h92

h99 h96 h93

h97 h94

h98 h95

h99 h96

h97

h98

h99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12

h13

h14

h15
...

h99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8.A.1)

giving either the autocorrelation method, the covariance method, or the mod-
ified covariance, depending on how A and b are chosen, as described in
Section 8.3.1.





Chapter 9
Modelling errors

9.1 Introduction

We saw in Chapters 5 and 6 that channel estimation and prediction per-
formance is dictated by channel fading characteristics and coherence band-
width. We assumed that the channel properties could be perfectly described
by a linear state space model. The inherent difficulties in determining the
parameters of such a model give us good reason to assume that the estima-
tion/prediction performance will be influenced not only by the behaviour of
the actual channel, but also by the accuracy to which the channel model
parameters can be determined.

The impact of modelling errors on optimal linear filters was investigated
mainly during the sixties and seventies. Examples include [98], which con-
siders uncertainties in the initial (prior) distribution of the states, and [99],
which extends the results in [98] to the case of uncertain noise covariance
matrices.

Model parameter uncertainties are relatively rarely considered in digital
communications, partly because communications systems commonly include
error detecting and correcting coding functionality that can compensate for
modelling errors. Among the sparse literature on the subject we may mention
[100] and [29], who considered the impact of modelling errors in channel
estimation performance in OFDM systems when blockwise MMSE filters are
employed.

In this chapter we will derive expressions for the error covariance for the
channel coefficient estimates when erroneous models are employed. Such
expressions let us study the impact of modelling errors in different scenarios.
For illustration, we examine a few case studies.

221
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9.2 Theory

In this section we present two theorems that are useful when considering
erroneous channel models. Theorem 9.2.1 assumes structural consistency, so
that the matrices in the state space models, used to represent the modelled
channel and the actual channel, must have the same dimensions. Theorem
9.2.2 is more general in that it does not assume structural consistency.

9.2.1 Model

Let a process of state vectors {xt} and measurement vectors {yt} be described
by a linear model

xt+1 = Ftxt + Gtut, (9.2.1)

yt = Jtxt + vt, (9.2.2)

in which t ≥ 0 and the zero-mean Gaussian processes ut and vt are white
with known covariance matrix∥∥∥∥

[
ut

vt

]∥∥∥∥2

=

[
Qt 0
0 Rt

]
. (9.2.3)

The initial state x0 is zero-mean Gaussian with covariance matrix Π0 and
uncorrelated with ut and vt. It is well-known that the optimal filtered state
estimation vector x̂t|t and the optimal one-step state prediction vector x̂t are
given by the Kalman filter recursions as we have seen in Chapter 3, although
we here consider general time-varying matrices:

Re,t = JtPtJ
∗
t + Rt, (9.2.4)

Kf,t = PtJ
∗
tR

−1
e,t , (9.2.5)

x̂t|t = x̂t + Kf,t(yt − Jtx̂t), (9.2.6)

Pt|t = (I−Kf,tJt)Pt, (9.2.7)

x̂t+1 = Ftx̂t|t, (9.2.8)

Pt+1 = FtPt|tF
∗
t + GtQtG

∗
t . (9.2.9)

The error covariance for the filtered estimates and the one-step predictions
are given by Pt|t and Pt, respectively. As in previous chapters, we use the

short-hand notation x̂t|t+1 � x̂t and Pt|t−1 � Pt. The measurement up-
date (9.2.6) and time update (9.2.8) for the state estimation vector can be
combined into the predictor update

x̂t+1 = Ftx̂t + Kp,tet, (9.2.10)
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where the Kalman predictor gain Kp,t = FtKf,t and the innovations et =
yt − Jtx̂t. The predictor update can also be written

x̂t+1 = Fp,tx̂t + Kp,tyt, (9.2.11)

where
Fp,t = Ft −Kp,tJt. (9.2.12)

9.2.2 Modelling errors with structural consistency

We now turn to studying what happens when the fading channel is governed
by one model (the signal model), but the Kalman filter is based on another
model (the design model), so that we have a modelling error. We first con-
sider modelling errors when the signal model and the design model have the
same structure.

Theorem 9.2.1 (The impact of modelling errors). Consider a standard state
space model

xa
t+1 = Fa

t x
a
t + Ga

t u
a
t , yt = Ja

t x
a
t + va

t , (9.2.13)

where the noises {ua
t } and {va

t } and the initial state xa
0 are zero-mean white

Gaussian and uncorrelated with covariance matrices Qa
t , Ra

t , and Πa
0, respec-

tively. Suppose that there are modelling errors present, so that one-step pre-
dictions of {xt} are based on the Kalman filter recursions, but with some ma-
trices {Fb

t ,G
b
t,J

b
t,Π

b
0,Q

b
t,R

b
t} in place of the real model {Fa

t ,G
a
t ,J

a
t ,Π

a
0,Q

a
t ,R

a
t },

giving a suboptimal Kalman gain

Kb
p,t = Fb

tP
b
tJ

b∗
t (Jb

tP
b
tJ

b∗
t + Rb

t)
−1, (9.2.14)

where

Pb
t+1 = Fb

tP
b
tF

b∗
t +Gb

tQ
b
tG

b∗
t −Fb

tP
b
tJ

b∗
t (Jb

tP
b
tJ

b∗
t +Rb

t)
−1Jb

tP
b
tF

b∗
t , Pb

0 = Πb
0,

(9.2.15)
that is, the usual discrete-time Riccati difference equation (4.3.18), but based
on the design model. Assume structural consistency so that {xa

t , x̂
b
t}, {Fa

t ,F
b
t},

{Ga
t Q

a
t G

a∗
t ,Gb

tQ
b
tG

b∗
t }, {Ja

t ,J
b
t}, and {Ra

t ,R
b
t} have pairwise the same di-

mensions. Then, the state-error covariance Pt = ||xa
t − x̂b

t ||2 will obey the
following recursion:

Pt+1 = Fb
p,tPtF

b∗
p,t + Ga

t Q
a
t G

a∗
t + Kb

p,tR
a
t K

b∗
p,t

+ (Fb
p,t + ΔFp,t)Π

a
t (F

b
p,t + ΔFp,t)

∗ − Fb
p,tΠ

a
t F

b∗
p,t

− Fb
p,tTtΔF∗p,t −ΔFp,tT

∗
tF

b∗
p,t, Pa

0 = Πa
0,

(9.2.16)

where Fb
p,t = Fb

t −Kb
p,tJ

b
t (cf. (9.2.12)) and

ΔFp,t = (Fa
t − Fb

t)−Kb
p,t(J

a
t − Jb

t) = Fa
t − Fb

p,t −Kb
p,tJ

a
t , (9.2.17)
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and where Tt � 〈x̂b
t ,x

a
t 〉 and Πa

t � ‖xa
t ‖2 obey

Πa
t+1 = Fa

t Π
a
t F

a∗
t + Ga

t Q
a
t G

a∗
t , (9.2.18)

Tt+1 = Fb
p,tTtF

a∗
t + Kb

p,tJ
a
t Π

a
t F

a∗
t , T0 = 0. (9.2.19)

Proof. Beginning with (9.2.18) and (9.2.19), the recursion (9.2.18) follows
directly from Theorem 3.4.1. Recursion (9.2.19) follows from

Tt+1 = 〈x̂b
t+1,x

a
t+1〉 = 〈Fb

p,tx̂
b
t + Kb

p,tyt,F
a
t x

a
t + Ga

t u
a
t 〉

= 〈Fb
p,tx̂

b
t + Kb

p,tJ
a
t x

a
t + Kb

p,tv
a
t ,F

a
t x

a
t + Ga

t u
a
t 〉

= 〈Fb
p,tx̂

b
t + Kb

p,tJ
a
t x

a
t ,F

a
t x

a
t 〉

= Fb
p,tTtF

a∗
t + Kb

p,tJ
a
t Π

a
t F

a∗
t ,

(9.2.20)

In the above, we have used the fact that 〈x̂b
t ,u

a
t 〉 = 0, 〈xa

t ,u
a
t 〉 = 0, and

〈va
t ,x

a
t 〉 = 0. To derive the recursion (9.2.16), first note that xa

t+1− x̂b
t+1 can

be written

xa
t+1 − x̂b

t+1 = Fa
t x

a
t + Ga

t u
a
t − Fb

p,tx̂
b
t −Kb

p,tJ
a
t x

a
t −Kb

p,tv
a
t

= (Fa
t −Kb

p,tJ
a
t )︸ ︷︷ ︸

=Fb
p,t+ΔFp,t

xa
t + Ga

t u
a
t − Fb

p,tx̂
b
t −Kb

p,tv
a
t

= Fb
p,t(x

a
t − x̂b

t) + ΔFp,tx
a
t + Ga

t u
a
t −Kb

p,tv
a
t .

(9.2.21)

The one-step prediction error covariance matrix Pt+1 can now be expressed
as

Pt+1 = ||xa
t+1 − x̂b

t+1||2

= ||Fb
p,t(x

a
t − x̂b

t) + ΔFp,tx
a
t + Ga

t u
a
t −Kb

p,tv
a
t ||2

= Fb
p,tPtF

b∗
p,t + Ga

t Q
a
t G

a∗
t + Kb

p,tR
a
t K

b∗
p,t

+ Fb
p,tΠ

a
t ΔF∗p,t + ΔFp,tΠ

a
t F

b∗
p,t + ΔFp,tΠ

a
t ΔF∗p,t

− Fb
p,tTtΔF∗p,t −ΔFp,tT

∗
tF

b∗
p,t.

(9.2.22)

To arrive at (9.2.16), it remains to rewrite the Πa
t -terms in (9.2.22). Making

use of the fact that Fb
p,t + ΔFp,t = Fa

t −Kb
p,tJ

a
t by (9.2.17), it follows that

Fb
p,tΠ

a
t ΔF∗p,t + ΔFp,tΠ

a
t F

b∗
p,t + ΔFp,tΠ

a
t ΔF∗p,t

= (ΔFp,t + Fb
p,t)Π

a
t ΔF∗p,t + ΔFp,tΠ

a
t F

b∗
p,t

= (ΔFp,t + Fb
p,t)Π

a
t ((F

a
t −Kb

p,tJ
a
t )
∗ − Fb∗

p,t) + ΔFp,tΠ
a
t F

b∗
p,t

= ΔFp,tΠ
a
t (F

a
t −Kb

p,tJ
a
t )
∗ + Fb

p,tΠ
a
t (F

a
t −Kb

p,tJ
a
t )
∗ − Fb

p,tΠ
a
t F

b∗
p,t

= (Fb
p,t + ΔFp,t)Π

a
t (F

b
p,t + ΔFp,t)

∗ − Fb
p,tΠ

a
t F

b∗
p,t,

(9.2.23)

which proves the theorem.
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Note that, if the true model is used so that Fa = Fb = F and so on, so
that the superscript a or b are omitted, the recursion (9.2.16) reduces to the
ordinary discrete-time Riccati difference equation, which is trivially seen by
setting ΔFp,t = 0. Also, with a correct design model we should have that
Tt = 〈x̂t,xt〉 = 〈x̂t, x̂t + (xt − x̂t)〉 = ‖x̂t‖2 = Σt so that Tt should obey the
same recursion as that for Σt (see (3.4.30)):

Σt+1 = FtΣtF
∗
t + Kp,tRe,tK

∗
p,t. (9.2.24)

Using the fact that Pt = Πt − Σt (see (3.4.31)), we can write

Σt+1 = FtΣtF
∗
t + Kp,tRe,tK

∗
p,t

= FtΣtF
∗
t + Kp,tJtPtF

∗
t

= FtΣtF
∗
t + Kp,tJt(Πt − Σt)F

∗
t

= (Ft + Kp,tJt)ΣtF
∗
t + Kp,tJtΠtF

∗
t

= Fp,tΣtF
∗
t + Kp,tJtΠtF

∗
t ,

(9.2.25)

which is the same form as (9.2.19).
Another fact that can be seen from (9.2.16), and was first pointed out

by [98], is this: if the only errors present in the model lie in the covariance
matrices Π0, Qt, and Rt (so that ΔFp,t = 0), such that

Πb
0 ≥ Πa

0, Qb
t ≥ Qa

t , Rb
t ≥ Ra

t , (9.2.26)

then it holds that

Pb
t ≥ Pt. (9.2.27)

This can be seen by writing (9.2.15) on the form

Pb
t+1 = Fb

p,tP
b
tF

b∗
p,t + Gb

tQ
b
tG

b∗
t + Kb

p,tR
b
tK

b∗
p,t, (9.2.28)

and comparing this with (9.2.16) when ΔFp,t = 0,

Pt+1 = Fb
p,tPtF

b∗
p,t + Ga

t Q
a
t G

a∗
t + Kb

p,tR
a
t K

b∗
p,t. (9.2.29)

This means that if upper bounds for Π0, Qt, and Rt are used, then the ac-
tual state estimation error covariance Pt is upper bounded by the calculated
quantity Pb

t .

9.2.3 Modelling errors with structural inconsistency

In Section 9.2.2 we demanded that the true model and the design model have
the same dimensions of the state spaces. We now relax this constraint.
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Theorem 9.2.2 (Impact of modelling errors). Consider the modelling error
case described in Theorem 9.2.1, but without the assumption of structural
consistency. Consider linear combinations za

t = Aa
t x

a
t and zb

t = Ab
tx

b
t that

have the same dimensions. It then holds that

‖za
t − ẑb

t‖2 = Aa
t Π

a
t A

a∗
t −Aa

t T
∗
tA

b∗
t −Ab

tTtA
a∗
t + Ab

tΣ
b
tA

b∗
t , (9.2.30)

where Πa
t and Tt obey the same recursions as in Theorem 9.2.1, and where

Σb
t+1 = Fb

p,tΣ
b
tF

b∗
p,t + Fb

p,tTtJ
a∗
t Kb∗

p,t + Kb
p,tJ

a
t T

∗
tF

b∗
p,t

+ Kb
p,tJ

a
t Π

a
t J

a∗
t Kb∗

p,t + Kb
p,tR

a
t K

b∗
p,t.

(9.2.31)

Proof. The equality (9.2.30) follows trivially. The recursion (9.2.31) follows
from (9.2.11) and (9.2.1) as

Σb
t+1 = ‖x̂b

t+1‖2 = ‖Fb
p,tx̂

b
t + Kb

p,tyt‖2

= ‖Fb
p,tx̂

b
t + Kb

p,tJ
a
t x

a
t + Kb

p,tv
a
t ‖2

= Fb
p,tΣ

b
tF

b∗
p,t + Fb

p,tTtJ
a∗
t Kb∗

p,t + Kb
p,tJ

a
t T

∗
tF

b∗
p,t

+ Kb
p,tJ

a
t Π

a
t J

a∗
t Kb∗

p,t + Kb
p,tR

a
t K

b∗
p,t,

(9.2.32)

hence proving the theorem.

Note that we have restricted the discussion to concern errors for one-
step predictions. Similar expression as in Theorems 9.2.1 and 9.2.2 can be
derived also for many-steps predictions, smoothing estimates, and filtered
estimates (see Appendix 9.A). However, such expressions tend to be more
complicated than the expressions used here. To keep the presentation as
simple as possible, we confine the discussion of the case studies to one-step
predictions.

9.3 A few case studies

To demonstrate the use of Theorems 9.2.1 and 9.2.2, we here study a few
model error cases. Throughout this section, when not explicitly stated other-
wise, we assume a Doppler spectrum as illustrated in Figure 9.1, expressed by
a 4th order AR model. The time tp between pilot bearing OFDM symbols is
200 μs, the carrier frequency is 3 GHz, and the velocity is set to a pedestrian
speed of v = 7.2 km/h. The SNR was set to 10 dB. On pilot bearing OFDM
symbols, pilots are located on every fourth subchannel. The WINNER II C2
NLOS channel model (see Section 2.3.2) was used. The prediction horizon
here is tpfcv/c0 = 0.004 wavelengths, i.e. the results practically correspond
to filtered estimates.
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Figure 9.1: Doppler spectrum for a 4th order AR model at pedestrian speed 7.2
km/h.

Because the channel model gives rise to a frequency selective channel,
NMSE performance will vary between outer and inner subchannels over a
filter band of width w. Assuming that w is even, w/2 different NMSE curves
are produced. In the figures below, the uppermost curves correspond to
the outermost subchannels in a filter band, whereas the lowermost curves
correspond to innermost subchannels.

9.3.1 Post-smoothing of channel estimates

As we have seen in Chapter 6, the filter width w is a parameter with which the
system designer can set a trade-off between complexity and filtering perfor-
mance. Filters running in parallel, each taking w adjacent pilot subchannels
into account, produce channel estimates (and predictions) over the whole
desired bandwidth. The hence produced grid of channel estimates will ex-
hibit “discontinuities” on the borderlines between the filter bands, since no
consideration is given to the correlation between adjacent subchannels lying
in different filter bands.

Instead of increasing the filter width to reduce the number of disconti-
nuities, which would lead to a considerable increase in computational com-
plexity (see Section 4.4), one could attempt to perform a post-smoothing
of the estimates. The smoothing should be carried out over a bandwidth
considerably larger than the filter width. We now analyze the utility of such
post-smoothing.

Assume that each filter has width w subchannels and that post-smoothing
over a band of cw subchannels is to be undertaken. Each filter i produces
a vector h̄i of channel estimates. Our “measurement” signal is then the c
w-vectors {h̄i}c

i=1. Defining h̄ = [h̄T
1 , . . . , h̄T

c ]T , we wish to produce a final
estimate ĥ based only on h̄. Forming the MMSE estimate (see Section 3.1),
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we find that

p(h|h̄, I) = CN (h; 〈h, h̄〉‖h̄‖−2h̄, ‖h‖2 − 〈h, h̄〉‖h̄‖−2〈h̄,h〉) (9.3.1)

and we are interested in calculating the mean square error (MSE), i.e. the
diagonal elements of ‖h‖2−〈h, h̄〉‖h̄‖−2〈h̄,h〉, and compare it with the MSE
obtained if one single filter covering the entire band of cw subchannels had
been used. We therefore need to calculate the cross-correlation 〈h, h̄〉 and
the autocorrelation ‖h̄‖2.

We can do this by considering an equivalent modelling error situation, in
which we run a filter of width cw, but erroneously model the subchannels as
independent between bands of width w. This is accomplished by letting the
covariance matrix for the subchannels in the design model be block-diagonal
with blocks of size w × w. The suboptimal estimate h̄ that we then obtain
for the cw-vector h is exactly the same as had we run c parallel filters.

We model the true channel with a state-space model {F,G,J,Πa
0,Q

a,R}
and use the design parameters {F,G,J,Πb

0,Q
b,R} to represent the erroneous

model, as described in Chapter 4. Note that the two models only differ
in the process correlation matrices. In this investigation, we consider a one-
user system. We may therefore, without losing generality, set the pilot matrix
Φt = I, so that the true channel is given by h = Jxa and the sub-optimal
one-step predictions are given by h̄ = Jx̂b. Using Theorem 9.2.1, we find that
〈h, h̄〉 = J〈xa, x̂b

t〉J∗ = JT∗J∗ and that ‖h̄‖2 = J‖x̂b‖2J∗ = JΣbJ∗. In the
above, time indices are omitted to indicate that we consider the converged
filter.

The matrix ‖h̄‖2 may be badly conditioned so that direct inversion is
not advisable. Instead we solve for A in (JΣbJ∗)A = JTJ∗. The MSE
values of the post-smoothed filter are then found in the diagonal elements of
‖h‖2 − JT∗J∗A. The prior covariance matrix ‖h‖2 has the SNR along its
diagonal, and we here set the SNR to 10 dB.

We evaluate the performance of post-smoothing when the original narrow-
band filter spans w subchannels and post-smoothing is carried out over c filter
bands. We investigate five settings for the parameters w and c in increasing
order of performance: {w, c} = {1, 16}, {w, c} = {2, 8}, {w, c} = {4, 4},
{w, c} = {8, 2}, and {w, c} = {16, 1}, so that the total filter width is always
16 subchannels. In Figure 9.2, the NMSE performance of the one-step predic-
tion after post-smoothing (solid lines) is compared with the NMSE without
post-smoothing (dashed lines). We also compare with the optimal perfor-
mance of a high-complexity filter spanning al 16 subchannels (dotted lines).
The NMSE improvement provided by the post-smoothing is quite dramatic,
especially for low values of w and high values of c.

In the context of post-smoothing it is worth noting that the narrowband
filters, although they perform considerably worse than the post smoothed and
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Figure 9.2: Post-smoothing one-step prediction NMSE performance (solid) versus
filter width w of the narrowband filter. The post-smoothing is carried out over
c parallel filter bands, where c is chosen so that cw = 16. Dashed lined mark
the performance of the narrowband filters prior to post-smoothing. Dotted lines
indicate the performance of an optimal filter operating over 16 subchannels.

the optimal filters, are still optimal, given measurements over w subchannels
only. The post-smoothed filter, however, is sub-optimal given measurements
over all 16 subchannels, but optimal given the vector of estimates h̄.

9.3.2 Model order sensitivity

We here study the impact of choosing an inappropriate model order and/or
modelling the Doppler spectrum incorrectly. In Figure 9.3, the signal model
uses a 4th order AR model for the time dynamics of the channel, giving the
Doppler spectrum illustrated in Figure 9.1. The SNR is set to 10 dB. We
investigate how the NMSE of the one-step predictions is affected by using a
different Doppler spectrum in the design model (although the model order
is correct). The model matrices {Fa,Ga,Ja,Πa

0,Q
a,Ra} for the signal model

and the corresponding matrices {Fb,Gb,Jb,Πb
0,Q

b,Rb} for the design model
are constructed according to the framework in Chapter 4. Theorem 9.2.1
(or Theorem 9.2.2) is then used to produce ‖ha − ĥb‖2 = ‖Jaxa − Jbx̂b‖2,
from whose diagonal we find the MSE. The solid lines in the figure displays
NMSE performance when a range of different Doppler spectra are used in
the design model, from a Jakes-like Doppler spectrum with poles close to
the unit circle (low flatness), to a flat Doppler spectrum (high flatness). The
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Figure 9.3: One-step prediction NMSE versus flatness of the design Doppler spec-
trum when the true model has flatness parameter 0.3. Solid lines indicate results
for a correct AR model order in the design model (order 4). Dashed lines indicate
results for an incorrect model order in the design model (order 2).

true model has flatness 0.3. The degree of flatness is defined so that flatness
1 means that four poles are distributed evenly over a half-circle in the left
complex plane, corresponding to a continuous-time Butterworth filter. This
filter is then transformed to a discrete-time filter according to Section 4.2.1.
For lower values of the flatness, the angles of the respective poles are shifted
towards the imaginary line, so that flatness 0 means that all four poles are
located on the imaginary line (the unit circle in discrete time). Evidently,
the best performance is achieved when the correct model is used. Also, the
NMSE performance decays considerably faster if the poles are placed too
close to the unit circle, than if they are located too far from the unit circle.
It is therefore advisable to use caution when designing the fading model, and
place poles somewhat farther from the unit circle than what measurements
might suggest.

We also investigate what happens when the incorrect model order is used.
Dashed lines in Figure 9.3 indicate NMSE performance when the design
model has order 2 instead of the correct model order 4. Note that Theorem
9.2.2 has to be employed here, due to the inconsistency in model structures.
The NMSE increases with about 2 dB because of the erroneous model order,
but the sensitivity due to placing poles too close to the unit circle is not
seen here. This is due to the fact that the lower model order will cause the
Doppler spectrum to be smoother than if a high model order is used.
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Figure 9.4: One-step prediction NMSE versus flatness of the true Doppler spec-
trum when the design model is held fixed with a flatness parameter of 0.3. The
fading channel is generated by an AR process of order 4, with varying flatness
parameter.

Finally in this experiment, we investigate what happens is the design
model is held fixed with a Doppler spectrum with flatness 0.3, while the
Doppler spectrum in the signal model is allowed to vary. See Figure 9.4.
Interestingly, the NMSE performance is better the less flat the true Doppler
spectrum is. There is no global minimum when the true model is used. This
illustrates the importance of the fading behaviour of the actual channel.

9.3.3 Tap drift

The topic here is to examine the impact of erroneous estimation of delays
of taps in a channel impulse response. We consider a flat fading channel, so
that the impulse response has a single tap. The true delay of this tap, as
represented by the signal model, is 0 s. In the design model, we let the tap
delay vary and we study the impact on the NMSE of the one-step predictions
that this has. See Figure 9.5. The largest delay estimation error investigated
in the figure, 500 ns, corresponds to misjudging the path length by 150 m,
which is quite extreme. For moderate errors, say up to 50 ns, the performance
decrease is minute for the middle subchannels (lower curve). For the outer
subchannels (upper curve), however, the NMSE increase is several dB. The
reason is that misjudging delays lead to erroneous expectations on correlation
between subchannels. This error is largest for the outer subchannels. It
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Figure 9.5: If the delay of the single tap in a flat fading channel is erroneously
estimated, the estimation and prediction performance will deteriorate. The true
tap delay is 0 s. One-step prediction NMSE versus the estimated tap delay is
illustrated. The filter width was w = 4. Results for outer subchannels (upper
curve) and inner subchannels (lower curve) are shown. The SNR is 10 dB.

should be noted here, that we consider misjudging the delay of the entire
energy in the impulse response. In a frequency-selective channel where only
some of the tap delays are poorly estimated, the performance drop is expected
to be less.

9.3.4 Impulse response length

The WINNER II C2 NLOS channel model has 24 taps (see Section 2.3.2). We
examine what happens if only a subset of those taps are included in the design
model. Figure 9.6 displays NMSE performance of the one-step predictions
as a function of the number of taps in the design impulse response. At all
times, the total power is normalized so that the design model represents a
channel with correct SNR, which we here set to 10 dB, but with the wrong
frequency correlation properties. Evidently, capturing as large a part of the
impulse response as possible in the design model is crucial for good one-step
prediction performance.
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Figure 9.6: One-step prediction NMSE performance for one-step prediction when
only the first c out of a total of 24 significant taps in the channel impulse response
is included in the design model. The number of taps c is featured on the x-axis.
The filter width was w = 4. Results for outer subchannels (upper curve) and inner
subchannels (lower curve) are shown. The SNR is 10 dB.

9.4 Summary

In this chapter we studied the impact of modelling errors. Two theorems were
presented, with which one-step state prediction error covariance matrices can
be calculated in cases where the design model used to derive the channel
tracking Kalman filter differs from the channel model that exactly describes
the statistical properties of the actual channel. The state prediction error
covariance matrices may be used e.g. to derive normalized mean square error
values for channel predictions. We illustrated the utility of the theorems with
a number of examples.
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9.A Filtered estimates

In Theorem 9.2.1 and 9.2.2 we derived expressions for the error of the one-
step predictions, ‖xa

t − x̂b
t‖2, when modelling errors are present. We here

investigate how these expressions change when we instead consider the error
of the filtered estimates, ‖xa

t − x̂b
t|t‖2. First, note that

x̂b
t+1|t+1 = x̂b

t+1 + Kb
f,t+1(yt+1 − Jb

t+1x̂
b
t+1)

= (I−Kb
f,t+1J

b
t+1)x̂

b
t+1 + Kb

f,t+1yt+1

= (I−Kb
f,t+1J

b
t+1)F

b
t x̂

b
t|t + Kb

f,t+1J
a
t+1x

a
t+1 + Kb

f,t+1v
a
t+1.

(9.A.1)

Then it follows that

‖xa
t+1 − x̂b

t+1|t+1‖2 =

= ‖Fa
t x

a
t + Ga

t u
a
t − (I−Kb

f,t+1J
b
t+1)F

b
t x̂

b
t|t

−Kb
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a
t+1(F

a
t x

a
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t u
a
t )−Kb
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a
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(9.A.2)

This is to be compared with the second line in (9.2.22). We also need a
recursion for 〈x̂b

t|t,x
a
t 〉, which corresponds to Tt in Theorem 9.2.1:

〈x̂b
t+1|t+1,x

a
t+1〉 =

= 〈(I−Kf,t+1J
b
t+1)F

b
tx̂

b
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a
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a
t x

a
t + Ga

t u
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t )
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a
t x

a
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t u
a
t 〉
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b
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b
t〈x̂b

t|t,x
a
t 〉Fa∗

t + Kb
f,t+1J

a
t+1Π

a
t F

a∗
t

+ Kb
f,t+1J

a
t+1G

a
t Q

a
t G

a∗
t .

(9.A.3)

Similar recursions can be derived for many-steps predictions or for smoothing,
but apparently, the above expressions look more intimidating than the one-
step expressions, which is why we have restricted the exposition to one-step
predictions in this chapter.
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