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Abstract
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Wireless broadband systems based on Orthogonal Frequency Division Multiplexing (OFDM)
are being introduced to meet demands for high data transfer rates. In multiple users systems,
the available bandwidth has to be shared efficiently by several users. The radio channel qual-
ity will fluctuate, or fade, as users move. Fading complicates the resource allocation, but
channel prediction may alleviate this problem. A flexible and computationally inexpensive
state space representation of fading channels is here used in conjunction with a Kalman filter,
operating on special-purpose reference signals, to track and predict fading OFDM channels.

The thesis investigates key design and performance aspects of such estimators. Taking a
probabilistic approach, we interpret the output of the Kalman filter as a full representation of a
state of knowledge about the fading channels, given whatever information is at hand. For
systems analysis, this permits conclusions to be drawn about channel estimation and predic-
tion performance based on only vague information about the fading characteristics of the
channel rather than on actual channel measurements. This is an alternative to conducting
classic simulation studies. Various reference signal designs are studied and good design choi-
ces are recommended. Superimposed reference signal schemes are also proposed for and
evaluated in cases where multiple signals are received, e.g. in multi-user (MU), multi-input
multioutput (MIMO), or coordinated multi-point (CoMP) settings. By using time-varying
reference signals, channel estimation and prediction performance is shown to be improved
considerably in crowded frequency bands. The variation of prediction performance with
prediction range and Doppler spectrum characteristics is investigated. For link adaptation, we
derive the appropriate metric on which adaptation decisions should be used. The probability
density function for this metric is derived for general MIMO channels. Link adaptation is
studied for a single link system when channel prediction and estimation errors are present,
both for uncoded systems and systems using large block codes with soft decoders. Various
aspects of channel model acquisition are addressed by conducting studies on measured chan-
nels. Owing to the use of special matrix structures and fast convergence to time-invariant or
periodic solutions, we find the Kalman filter complexity to be reasonable for future imple-
mentation. Finally, expressions for the impact of modelling errors are derived and used to
study the impact of modelling errors on channel prediction performance in some example
cases.
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Sammandrag

Antalet enheter som ansluter till Internet via mobila datanit vixer snabbt
och efterfragan pa hogre datacverforingshastigheter kar. Tradlosa bredbands-
system baserade pa dverforingstekniken Orthogonal Frequency Division Mul-
tiplexing (OFDM) infors nu for att uppfylla dessa krav. I tradlosa fler-
anviandarsystem maste den tillgdngliga bandbredden delas effektivt mellan
flera anvéndare. Dessutom kommer mobila anvéandare som ror sig genom det
staende vagmonster som skapas av den utsidnda radiovagen fran basstationer
att erfara att den mottagna signalstyrkan varierar, fiadar, 6ver tid. Fragan
om hur resurser ska fordelas mellan anvéindare kompliceras av fadning, men
problemet kan till viss del forenklas genom att lata anvindarna forutsiga
eller prediktera den fadande radiokanalen. Kanalprediktion &r det huvudsak-
liga temat for denna avhandling.

En flexibel och berikningsméssigt relativt snal s.k. tillstandsrepresenta-
tion av fadande radiokanaler anvands hér i kombination med ett kalmanfilter,
vilket med hjélp av speciella referenssignaler anvénds bade for att prediktera
och folja fidande OFDM-kanaler. Avhandlingen undersoker centrala design-
och prestandaaspekter for denna typ av kanalfoljare och -prediktorer. Resul-
taten fran kalmanfiltret tolkas hir som en fullstdndig representation av den
kunskap om de fidande kanalerna som brusiga métningar av referenssignaler-
na ger. Som ett alternativ till att utfora klassiska simuleringsstudier tillater
detta oss att berdkna kanalféljarens och kanalprediktorns prestanda baserat
endast pa vag information om fidningens statistiska egenskaper.

Olika konfigurationer for referenssignalerna studeras och rekommenda-
tioner for goda designval presenteras. Det ramverk for kanalmodellering som
foreslas tillater att referenssignaler fran olika sidndarantenner 6verlagras pa
varandra i den mottagna signalen. Detta medfor att andelen signalband-
bredd som upptas av referenssignaler kan hallas pa en rimlig niva, trots att
antalet signaler som samsas om frekvensutrymmet &r stort. Vi undersoker
typer av system dér flera signaler tas emot, sasom t.ex. fleranvindarsystem,
flerantennsystem (MIMO) eller koordinerade flerpunktsandningar (CoMP),
och studerar hur olika val av referenssignaler paverkar prediktionsprestanda.
Genom att variera referenssignalerna 6ver tid kan kanalféljnings- och predik-
tionsprestanda forbattras avsevart i fall da manga signaler maste samsas om
samma frekvensband. Vi undersoker d&ven hur prediktionsprestanda beror av
kanalens dopplerspektrum samt prediktionshorisont.

Vi beaktar linkadaption och definierar det matt som bor ligga till grund
for lankadaptionsbeslut. Sannolikhetsférdelningen for detta matt hirleds for
generella MIMO-kanaler. Realistiska kanalfoljare och kanalprediktorer ger
alltid upphov till ett visst matt av felgissningar. Linkadaptionsprestanda



il

utvirderas i ett enanvindarsystem dar bade skattningsfel och prediktionsfel
foreligger. Bade okodade system och kodade system som anvinder sig av
mjuka avkodare studeras.

Vi studerar métningar av fidande radiokanaler uppmétta vid lag for-
donshastighet i stadsmiljé. Studien gors med avseende pa kanalernas tidsdy-
namik och frekvensegenskaper, liksom pa deras formaga att foljas samtidigt
da overlagrade referenssignaler anvinds. Baserat pa dessa resultat ges rek-
ommendationer for hur modellparametrar for kanalmodeller bor skattas.

Den numeriska komplexitet for de foreslagna kalman-baserade algoritmer-
na utvarderas. Goda konvergensegenskaper i kombination med att speciella
matrisstrukturer anvénds ger en komplexitet som ligger pa en niva som &r
rimlig for framtida implementering av de foreslagna algoritmerna.

Om de kanalermodeller som anvénds inte beskriver de verkliga kanalernas
fadningsegenskaper pa ett tillfredsstéllande sétt sa kommer kanalprediktion-
sprestanda att avta. Vi hérleder teoretiska uttryck for effekten av sadana
modellfel och studerar nagra konkreta fall.
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Notation and symbols

A AN Boldface capital letters, caligraphic capital letters,
and Greek capital letters denote matrices.

a,a Boldface letters denote column vectors.

A a,a Letters in normal font denote scalars or sets.

A* The conjugate transpose of A.

AT The transpose of A.

A~ The conjugate transpose of the inverse of A.

A>0 The matrix A is positive definite.

Al <1 All eigenvalues of A are strictly inside the unit circle.

diag(ay,as,...) A diagonal matrix with diagonal elements
a1, Qg .. ..

diag(a) A diagonal matrix whose diagonal is given by the
vector a.

diag(A1, Ay, ...) A Dblock-diagonal matrix with diagonal blocks
A A,

circ(al) A circulant matrix, defined in (2.4.2), whose first
row is al.

I, The o X « identity matrix.

|A] The cardinality of a set A.

l.xp A a x § matrix containing only ones.

0axp A a x § matrix containing only zeros.

AcB Element-wise multiplication.

AoB Element-wise division.

Ali, j] Element {i,j} of the matrix A.

CN(a;a,R,) The multivariate circular symmetric complex

Gaussian distribution with free variable a, mean
value a, and covariance matrix R,, defined in Ap-
pendix (3.B.1).

Jo(a) The zeroth order Bessel function of the first kind.
In(a) The zeroth order modified Bessel function of the
first kind.

The non-central x2-distribution with two degrees
of freedom, defined in Appendix (4.A).
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p(a|D,I) The probability density function of a given data D
and information /.

E{a|D, I} The expected value of a given data D and infor-
mation I. E{a|D,I} = [ap(a|D,I)da, where the
integration is taken over the entire domain of a.

ij The Kronecker delta function. §;; =1 if ¢ = j and
zero otherwise.

d(a) The Dirac delta distribution. [, d(a)da = 1 and
d(a) =0if a # 0.

L{ay,...,a;} The linear vector space spanned by a, ..., a;.

a is a member of the set A.
The imaginary unit /—1.
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Chapter

Introduction

Consider the channel prediction situation illustrated in Figure 1.1. Two
mobile radio receivers, e.g. pedestrians carrying mobile phones or vehicles
equipped with radio receivers, receive a signal transmitted by a central an-
tenna. The transmitted wave is assumed to occupy a very narrow frequency
band, which means that it is practically a single tone. The wave bounces off
the ground, trees, buildings, and so forth, and interferes with itself so that
a standing wave pattern is formed in space. Due to the generally complex
geometry of the surroundings, the standing wave will feature a lot of irreg-
ularities. The peaks in the figure indicate points where the standing wave
pattern interferes constructively, and troughs mark destructive interference.
As the receivers move about, they move through the peaks and the troughs
and will therefore experience varying quality of reception. Some radio trans-
mission strategies strive to counteract the fluctuations of the radio channel,
others are designed to exploit them. For example, the centralized antenna
may use opportunistic scheduling, always transmitting to the user that expe-
riences the best channel quality. That way, the average quality of reception
for each receiver will be higher than if the receivers would blindly share the
resource, e.g. by using a time slotted schedule and taking turns in using the
time slots.

To allow for opportunistic scheduling, the mobile receivers need to signal
their respective received signal strengths to the system. A central problem
is that there is an inevitable delay between the time when this information
reaches the central system, and the time when data is actually transmitted to
one of the receivers. During this delay, a receiver may move from a good spot
(peak) to a bad spot (trough), or vice versa, as indicated in the figure. This
issue motivates the idea of prediction; it is not the present channel quality
that needs to be reported, but rather the channel quality a short time period
into the future.
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= ﬁ\‘

Figure 1.1: Two mobile receivers (equipped with out-of-date antennas for illustra-
tion) move through the interference pattern created by a wave transmitted from a
centralized antenna.

1.1 Approaches to channel prediction

Assuming that the central antenna is transmitting a single tone of constant
unit amplitude, a narrowband signal y; received in additive noise v; by a
mobile user equipment (UE) may be modelled in the baseband by

yt:ht+vta (].1].)

where the magnitude of the envelope of the fluctuating radio channel h; varies
with position (and thereby with time), as illustrated by the wave pattern in
Figure 1.1. For reasons mentioned above, we want to predict the channel,
say L time steps into the future. A way to model the predicted channel is to
say that it is adequately described by a weighted sum of the n most recent
channel measurements [1], [2], [3], [4]:

iLt+L = aohy +athy1 + ...+ an_1hi—ny1, (1.1.2)

where the hat symbol (%) indicates that we refer to a prediction of the chan-
nel and not the channel itself. If izt+ 1 is identical to the true channel h;yp,
then (1.1.2) is autoregressive (AR) in the channel coefficients. One therefore
refers to prediction methods based on the model (1.1.2) as AR methods. The
parameters {a;} in (1.1.2) are time varying if the receiver is mobile, and they
must be appropriately tuned and tracked to produce a good channel predic-
tion. Assuming that the true channel {h;} is available, it has been shown [5],
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[6] that the AR model parameters can be estimated to high precision, so that
the difference between the predicted channel ;Lt+L and the true channel Ay p,
is small for moderate values of L. To determine the time-varying parameters
{a;} in (1.1.2), block-wise Minimum Mean Squares Error (MMSE) estima-
tion may be used [3],[4], or adaptive methods such as Least Mean Squares
(LMS) [2],[6], or Wiener LMS [7], or Recursive Least Squares (RLS) [6] may
be employed to track the AR coefficients.

By the z-transform, the model (1.1.2) can be written on polynomial form
[8], as a finite impulse response filter

= (O aiz . (1.1.3)

A special case, that is commonly separated from AR methods, arises when
the polynomial 1 — 2= Z?:_Ol a;z~" has all its zeros on the unit circle. The
fading channel is then modelled as a sum of sinusoids [5], [9], [10], [11],
[12], [13]. Sinusoid methods usually differ from AR methods in that the
AR parameters (the complex sinusoids in the case of sinusoidal modelling)
are estimated through subspace methods. A common subspace method used
in this context is Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) or slight modifications thereof [14], [15], [9], [11], [12]*.
Among other algorithms for estimating the parameters for complex sinusoids,
we may mention the MUItiple Signal Classification (MUSIC) algorithm [11],
[12], and root-MUSIC [17]. Eycoez et al [1] formulates the prediction problem
on AR form but uses the Maximum Entropy Method (MEM) to estimate the
parameters. A summary of performances for both AR and sinusoid methods
can be found in [5]. That investigation is undertaken both on synthetic data
and on real measurements.

Once the AR model parameters have been obtained, they are used in the
channel predictor. An obvious issue with the model (1.1.2) is that the true
fading channel coefficients {h;} are not available to the predictor. In practice,
noise reduction of noisy measurements {y;} has to be carried out to produce
a sequence of estimates that will hopefully resemble the true channel. Some
works [1],[2] consider a simplified case where the true channel coefficients are
assumed known. Others use low-pass filtering [18] or Wiener filtering [4] to
clean measurements from noise.

The noise reduction is a pragmatic intermediate step between the actual
available data {y,;} and the idealized model (1.1.2). The {h;} in (1.1.2) are

IBecause of a somewhat high complexity of the original ESPRIT formulation, some
works look at complexity-reduced versions of ESPRIT [10], [16]. A special utilization of
the ESPRIT is one in which the algorithm is employed in two tiers; in a first pass the time-
delays and the corresponding complex amplitudes of the sinusoids are estimated, followed
by Doppler frequency estimation in a second pass [10], [16].
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in practice channel estimates and are therefore functions of measurements
{y:}. An approach that is more straightforward than (1.1.2) to formulate the
predictor would be to say that the predictor should be formed by a weighted
sum of all past measurements:

t

]Alt+L = E:CzyZ (114)

=0

More generally, if multiple channels are to be taken into consideration, we
may consider predicting a vector-valued channel and expressing it as a weighted
sum of past vector-valued measurements {y;}:

t
ht+L = ZMlyl (115)

=0

This is the approach that we will take in the present thesis. By appropriately
tuning the matrix coefficients {M,}, we may derive the best possible linear
predictor given all available measurements. But how do we find the weights
ML)?

Before addressing this question, we should consider another issue; the
channel coefficients, contained in the vector hy, are never themselves of im-
mediate interest. Rather, it is some parameter relating to the channel coef-
ficients that we ultimately wish to infer, such as the maximum data transfer
rate that can be used under the current channel conditions, without the level
of distortion of the signal exceeding some predefined level.

A channel predictor that only produces point-wise predictions of the chan-
nel, as (1.1.2) does, will be inadequate under these circumstances, because it
does not provide any measure of uncertainty about the predicted parameter.
For example, let us put ourselves in the position of a point estimator that
is to infer a real-valued parameter x. The measurements, the evidence, give
us reason to believe equally strongly in the proposition that x is less than
zero, as in the proposition that x is larger than zero, and so we report the
value 0 to be an arguably reasonable point estimate of . But now imagine
that the person receiving this point estimate is interested in the value of z?
rather than the value of x. Unless we are certain that x is very close to zero,
the point estimate 0 is of little use to him because 0% is not a good estimate
of 2. On the other hand, had we reported an accurate and full represen-
tation of our knowledge of x given the evidence at hand, then the recipient
of that information could transform that knowledge into an equally accurate
representation of a state of knowledge about any function of x.

Therefore, instead of directly calculating a specific estimate of hy,, we
want to acquire a complete representation about our state of knowledge about
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hy,, i.e. we want to obtain the probability density function (pdf), p(h, ),
Of ht+L:

full state of knowledge about hy,,

. . = p(h o .
given measurements to time ¢ p(beiLlyo, - ye)

In principle, this pdf can then be used to derive the pdf for any function
f(ht+L) of hy,p:

change of variables

p(f(ht+L)|YO>---7Yt)' (1~1-6)

In this thesis we take an information theoretic approach to probability
theory. Specifically, we adhere to the so called Bayesian school, that consid-
ers probability theory as an extension to logic. Bayesianism offers a single
method for deriving probability density functions, regardless of the nature
of involved parameters. In contrast, classical probability theory constitutes
a large set of methods for calculating estimates. These methods may pro-
duce mutually inconsistent results and may not provide the whole pdf for a
parameter.

To derive a pdf is however in many cases an arduous task of assigning
prior distributions, applying Bayes theorem, integrating over irrelevant pa-
rameters, and changing variables. We will simplify this problem by using
models that restrict the pdfis of h; and y; to belong to a small class of
functions.

Specifically, we will let the measurement y; be a linear mapping of the
channel h; with added white Gaussian noise. In this thesis, we consider
Orthogonal Frequency Division Multiplexing (OFDM) wireless transmission
systems. In OFDM, data is transmitted over many parallel subchannels, each
subchannel carrying data at such a low symbol rate that no intersymbol inter-
ference occurs. Channel prediction performance can be improved by taking
several parallel subchannels into account at once. Instead of considering only
a scalar channel, we use a vector-valued measurement signal

p(ht+L|YO> s >yt)

Yt = (I)tht+vt7 (117)

that has, say, w elements. The vector h; may hold w parallel subchan-
nels from a single OFDM channel, but could also comprise fading channel
coefficients from u different OFDM channels, each constituting w parallel
subchannels, so that h; has length uw. By an appropriate design of the w-
by-uw matrix ®;, the u channels are summed, together with the noise v, in
the vector y; in a way that they can be separated and predicted individually
by studying the present and past w-vectors {y;}.

This flexibility is useful in modern multiuser systems for two reasons:
first, in a multiuser setting, it allows the receiver (here, the base station)
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to separately track the respective channels of multiple users whose signals
overlap so that a superposition of all incoming signals is received. Second, in
a so called Coordinated Multi-Point (CoMP) transmission, it allows the re-
ceiver (here, the mobile user equipment) to simultaneously track overlapping
signals from separate base stations.

It is also necessary to model the fading behaviour of the channels. We will
assume that the dynamics of the respective channel coefficients contained in
h; can be modelled as AR processes of finite order. As we shall see, this
allows us to set up a discrete-time state-space representation of the channels.

Assume that measurements up to and including time ¢ = T are available.
When the total set of measurements y = [yl ..., y4]? is a linear mapping
of the corresponding set of channel coefficient vectors h = [hl ... hI]"
plus additive Gaussian noise and when the statistical properties of h and
the noise are known, then it is straightforward to calculate an expression for
the pdf of h given y, and prediction is equally straightforward. However,
this computation is burdensome and the number of arithmetic operations
required for each added measurement vector grows as the time 7" increases.

In 1960, Rudolf Kalman published a paper [19] showing that the complex-
ity of determining the pdf of e.g. a channel vector hr given old measurements
h, can be kept at a constant level, if the process {h;} can be modelled on
linear state space form and the measurements are a linear regression in h,.?

Due to the linearity of the model and the Gaussian distribution of the
noise processes, the conditional pdf:s of h; will be Gaussian. Hence, a pdf
p(hy|yo, ..., y:) is uniquely determined by a mean value flm and a covari-
ance matrix Ry, ;. The estimator, denoted the Kalman filter, operates in a

recursive fashion, updating the pair (hy;, Rpy¢) as new evidence arrives:

(flt|taRh,t|t) rnew data yii (ﬁt+1\t+1th,t+1\t+1)~ (1~1'8)
This recursion weighs together old measurements in an optimal manner, to
produce the parameters (flﬂt, Ry, 4¢) that represent the pdf for h, given all
available measurements at time ¢. The Kalman filter hence provides both
the weights {M;} in (1.1.5), and the full state of knowledge of the channel
vector, given some set of data.

The Kalman filter has been used extensively in the OFDM channel esti-
mation and prediction literature. Most works use only the point-wise channel
estimates provided by the filter. Although the numerical complexity of the
Kalman is only linear in the number of measurements, the complexity per
filter update can still be extensive. Many authors therefore use models of
low order for the respective subchannels, such as random walk models [20] or

2Actually, the condition is that y; is a linear regression in the so called state vector
from the state space model of hy, as shall be evident in Chapter 4.
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AR1 models [21], [22], [23], [24], [25], although others use models of higher
order [26], [27]3. The increased interest in recent years in multiple-input
multiple-output (MIMO) OFDM systems has led several authors to consider
MIMO OFDM channel tracking with Kalman filters [23], [24], [25], [28].

The numerical complexity of the Kalman filter is generally considered to
be a problem. However, if constant model parameters are used, the Kalman
filter will quickly settle to a stationary state. Once this condition has been
reached, many computationally demanding components in the Kalman up-
dating procedure can be turned off until the model parameters change, and
this happens, as we shall see, rather seldom.

The focus so far has been on channel prediction, but in the Kalman filter,
estimation and prediction are closely related. In fact, channel estimation
will fall out as a by-product of channel prediction. Common methods for
OFDM channel estimation is to use Wiener filters or 2-dimensional block fil-
ters spanning a fixed time-frequency region [29], [30]. Once the Kalman filter
has converged, it will be identical to a Wiener filter. Further, if the coherence
time of the channels is short, then the Kalman/Wiener filter will practically
have a finite memory, making is essentially equal to a block filter. In settings
with constant model parameters, the Kalman filter can therefore be seen as
an adaptive filter that automatically calculates optimal filter weights from
given channel models.

In this thesis, we will use the Kalman filter as an inference engine. Given
prior information about the time dispersion and the fading statistics of the
channel, and possibly also noisy measurements, the Kalman filter produces
complete representations of the knowledge about a present and/or a future
channel that can be deduced from the given information. Our motivation for
doing so can be subdivided into four topics:

Inference from vague information

Bayesian inference transforms information at hand into a logically equivalent
statement about parameters of interest (“logic” is here meant in the sense of
the extended logic to be presented in Chapter 3). In the present context, this
means that we do not need any channel data, measured or synthetic, in order
to infer how well a system will perform in terms of channel estimation and
prediction. From only vague information about e.g. channel fading statis-
tics, we can therefore directly calculate channel estimation and prediction
performance metrics.

3The filter implementation may also be simplified by modelling the parallel subchannels
as uncorrelated [20], [26]. The lack of correlation between the estimated subchannels can
then be compensated for by combining the filter outputs in an optimal manner [26].
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Superimposed received signals

The quality of the output of a Kalman filter, i.e. the level of uncertainty
associated with the output, will depend on the statistical properties of the
channel that is observed, but also on how the measurement equation (1.1.7)
is constructed. By an appropriate selection of the regressor matrix ®;, several
channels may be superimposed on one another and tracked simultaneously.
It is however up to the system designer to choose the regressor matrix in
such a way that the inferences made about the respective channels are of as
high quality as possible.

Soft information in link adaptation

Transmitted information may be encoded to make the information more ro-
bust to distortions introduced by the fading channel and by noise. The pdf:s
produced by the Kalman filter can be used by an efficient channel decoder
to retrieve the transmitted message from the noisy received signal with fewer
bit errors than if the decoder had only point-wise channel estimates to work
with.

Modelling errors

In general, any type of information can be processed using Bayesian inference.
For computational reasons, we here restrict the type of information that we
feed to the inference engine (the Kalman filter), to statistical descriptions
of the channel and possibly also noisy measurements of the channel. This
framework does not allow us to express uncertainty about the channel’s fad-
ing statistics. Whatever information about fading statistics we pass to the
Kalman filter, it will consider this information to be absolutely accurate and
draw conclusions about channel estimation and prediction accordingly. If the
characteristics that we provide about the channel is incorrect, then so will
the performance conclusions reported by the Kalman filter be. However, it is
possible to calculate how a misinformed filter performs in terms of channel
estimation and prediction. The misinformed filter believes that it has a fully
accurate description of the channel’s statistical properties, while in reality,
the actual channel is described by a different model.

1.2 Outline

The thesis is outlined as follows:

Chapter 2 presents a short history of wireless technologies and puts channel
prediction into context. A short survey of fading radio channel modelling
and the basics of Orthogonal Frequency Division (OFDM) are also given as
a prerequisite for later chapters.
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Chapter 3 gives an overview of linear filter theory. We take an information
theoretic approach in which results from calculations are interpreted as an
agent’s state of knowledge, given some specified set of data and background
information. To make sense of this interpretation, we present an overview
of an approach to probability theory known as Bayesianism. The Kalman
filter is then derived using a geometric perspective, and formulas that will
be useful in later chapters are given.

The material presented in this chapter has in part been presented in
“Channel Estimation and Prediction from a Bayesian Perspective”,
D. Aronsson, Licentiate thesis, Uppsala University, 2007

Chapter 4. This chapter lays the foundation for coming chapters. In a step-
by-step fashion, a state space representation of multiple-input fading channels
is constructed. We use special matrix structures that permits easy scaling
of the channels. The numerical complexity for Kalman filters operating on
these state-space models is investigated and we find that the complexity is
considerably alleviated by the use of the special matrix structures, as com-
pared to a general Kalman filter. We also investigate some less conventional
Kalman filter formulations but find that they are not useful in the present
context.

The material presented in this chapter has in part been presented in
“Channel Estimation and Prediction from a Bayesian Perspective”,
D. Aronsson, Licentiate thesis, Uppsala University, 2007

Chapter 5. Here we consider channel estimation in a special type of trans-
mission scheme proposed within the WINNER project [31]. The objective
has been to see how well channel estimation performs for different block sizes
within the transmission scheme referred to as Block Interleaved Frequency Di-
vision Multiple Access (B-IFDMA). By exploring a large number of designs
for the regressor matrix in the measurement equation, we find that blocks as
small as 22 Hz - s can be used with adequate estimation performance.

The material presented in this chapter has in part been presented in
“Performance Evaluation of Memory-less and Kalman-based Channel Estimation
for OFDMA”,

D. Aronsson, T. Svensson and M. Sternad,

IEEFE Vehicular Technology Conference VT C-Spring 2009, and

“Block Interleaved Frequency Division Multiple Access for Power Efficiency, Ro-
bustness, Flexibility and Scalability”,

T. Svensson, T. Frank, T. Eriksson, D. Aronsson, M. Sternad and A. Klein,
EURASIP Journal on Wireless Communications and Networking, Special Issue on
38GPP LTFE and LTE Advanced, vol. 2009
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Chapter 6. Channel prediction when multiple signals are received simulta-
neously is considered here. We study how to design special-purpose reference
signals so as to facilitate the prediction of multiple channels. A special type,
“time-varying pilots”, turns out to be important in cases where the num-
ber of estimated channel coefficients is larger than the number w of utilized
subchannels. We also study the importance of the Doppler spectrum, the
signal-to-noise ratio, and the channel frequency selectivity on channel pre-
diction performance.

The material presented in this chapter has in part been presented in

“Kalman Predictor Design for Frequency-adaptive Scheduling of FDD OFDMA
Uplinks”,

D. Aronsson and M. Sternad, IEEE Conference on Personal, Indoor and Mobile
Radio Communications (PIMRC) 2007, and

“OFDMA Uplink Channel Prediction to Enable Frequency-adaptive Multiuser Schedul-
ing”,

D. Aronsson and M. Sternad, European Signal Processing Conference (EUSIPCO)
2007

Chapter 7. We consider link adaptation for unknown predicted fading chan-
nels. We show how to incorporate uncertainties about the channel, both re-
garding the present channel (channel estimation) and the true future channel
(channel prediction). It is emphasized that the degree of uncertainty that
should appropriately be considered is that of the future channel estimate,
and not the future channel itself. We consider uncoded as well as coded sys-
tems and adress the problem of choosing the code rate for large code blocks
spanning a large portion of the total frequency bandwidth. Since the optimal
link adaptation strategy is then difficult to implement, a suboptimal scheme
working for pedestrian velocities is suggested.

Chapter 8. When a Kalman filter is implemented as a channel estima-
tor/predictor, a channel model needs to be constructed from measurements
of the channel. In this chapter, we investigate various aspects of channel
model parameter acquisition. These include the method to use for parame-
ter acquisition, model order selection, block-size selection, noise suppression,
and model acquisition for multiple channels. We also study the convergence
rate of the Kalman filter in some typical scenarios.

Chapter 9. Here we derive formulas for one-step prediction performance
when the Kalman filter is misinformed. A few case studies illustrate the
utility of the formulas.



Chapter

Wireless communications

2.1 A brief historical overview

The steadily increasing demand for mobile services has transformed early
analog radio systems into the packet-based digital wireless systems we see
today. Early radio systems used a single central antenna, but due to limited
spectrum availability, the number of users such a systems could support was
low [32]. A crucial step towards increasing capacity of large-coverage wireless
multiuser systems was taken in the 1950’s and 60’s when the cellular system
concept was developed; instead of using only a single central antenna, multi-
ple centralized antennas connected through a core network can be deployed.
Each such antenna is called a base station (BS). Taking advantage of the fact
that received signal strength falls off with increasing distance, different user
equipments (UEs) can communicate with separate base stations and thereby
utilize the same radio resource (frequency, time slot, spreading code, etc.).
The location of a BS in a cellular system is sometimes referred to as a site,
and the coverage area served by each BS is called a cell. Having small cells
means that many users within a given geographical area can share the same
resource. On the other hand, small cells also require many sites, making the
system expensive to deploy.

The concept of resource reuse generates interference among different UEs
and BSs using the same resource. The reuse factor is defined as the ratio of
the total number of cells to the number of cells providing a specific resource.
The reuse factor needs to be chosen based on an optimization of total sys-
tem capacity and performance that takes inter-cell interference into account.
Figure 2.1 illustrates a few reuse patterns on a hexagonal grid. (It is common
to model a site as a hexagon, since hexagons tile the plane. Alternatively,
because each site is often equipped with three base station, each BS serving
a cell in the form of a 120° sector, the three cells covered by a site can be

11
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(d) reuse 9 (e) reuse 12

Figure 2.1: Regular reuse patterns

modelled as three connected hexagons.) The reuse factor is chosen as low as
possible. This implies that the noise and interference experienced by a UE in
a cellular system is normally dominated by the interference from other UEs,
rather than by thermal noise. We then say that the system is interference
limited rather than noise limited.

New technologies would soon be necessary to meet the demand for a fur-
ther increase of capacity and support for more services. While first generation
systems were analog, enabling voice traffic only, second generation systems
introduced digital communication, which enabled, apart from simple voice
traffic, data services such as e-mail and sms. In contrast to analog systems,
where each user needs to be allocated an exclusive frequency band, digital
systems allow more flexibility in the form of a number of different multiple
access techniques, allowing multiple users to share the same channel. The
most wide-spread of the second generation systems is GSM, which is based
on Time Division Multiple Access (TDMA) in combination with Frequency
Division Multiple Access (FDMA). GSM uses a number of separate radio
channels. These channels are divided into time frames, each frame consisting
of several time slots. A voice user is assigned a prespecified part of a frame,
regardless of how many other users are sharing the channel. This ensures
quality of service, since a user will always be guaranteed a constant through-
put if the signal is received with sufficient power. On the other hand, the
channel is only partially utilized in a system with few UEs.



Chapter 2. Wireless communications 13

Data networking paradigms can be divided into circuit switching and
packet switching. Circuit switching provides an unbroken and dedicated link
between sender and receiver, making it ideal for traditional voice traffic.
Packet switching on the other hand, groups information bits, regardless of the
type of information they represent, into packets which are then transferred
over non-dedicated links. Packet switching is therefore suitable for systems
that should support general data transfer. During the second half of the
1990’s, GSM was enhanced with General Packet Radio Services (GPRS). In
this standard, several time slots can be aggregated so that a user can use
more than one time slot in a frame. Exploiting this simple technique of
utilizing unused resources, GPRS increased the peak data rate from 9.6 kbps
to about 140 kbps. Similar techniques were used in the American 1S-136
standard.

The data rate was later increased further up to 348 kbps with the intro-
duction of Enhanced Data rates for GSM Evolution (EDGE). EDGE uses
higher order modulation and link adaptation to increase capacity. Measure-
ments of the received Signal-to-Noise Ratio (SNR) is fed back to the trans-
mitter and used for choosing coding and modulation (CM) formats [32],[33].

The third generation (3G) cellular systems, based on wideband Code
Division Multiple Access (WCDMA), were introduced at the turn of the
millennium. Target data rates for 3G were initially set to up to 2 Mbps for
indoor users, up to 144 kbps for pedestrians, and up to 64 kbps for vehicular
users, but today, these number are often widely exceeded in deployed systems.

A major step that boosted initial 3G performance was taken with High
Speed Packet Access (HPSA), which is the joint name for High Speed Down-
link Packet Access (HSDPA), introduced in Release 5 of the 3GPP!/WCDMA
specifications, and the Enhanced Uplink, introduced in Release 6. HSPA uses
higher order modulation, channel-dependent scheduling and rate control, and
fast Hybrid Automatic Repeat reQuest (HARQ) with soft combining. This
provides data rates of 5.7 Mbps in the uplink (the link from the UE to the
BS) and data rates of 14 Mbps in the downlink (the link from the BS to the
UE). It also provides reduced delays and delay variations over the wireless
links, which is important for high-speed data traffic.

3G evolution has since 2005 forked into two parallel tracks: HSPA Evo-
lution and Long Term Ewvolution (LTE). The LTE standard [34] has fewer
restrictions on backwards compatibility than HSPA and also addresses more
complex spectrum situations. LTE is optimized for broadband data traffic,
and is based on packet switching. The multiple access technique used in the
LTE downlink is Orthogonal Frequency Division Multiple Access (OFDMA)
which builds on Orthogonal Frequency Division Multiplezing (OFDM). OFDM

The Third-Generation Partnership Project (3GPP) develops the specifications for
UTRA (the official name for the 3G standard described here) and GSM systems.
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divides the radio resource into small time-frequency units. In OFDMA these
units can be distributed among users in a flexible way, which takes their chan-
nel variability over frequency and time into account. We return to OFDM
in Section 2.4. LTE is sometimes identified as “almost” a fourth genera-
tion (3.9G) system. Among many improvements over earlier systems, LTE is
specified to support up to 50 Mbps and 100 Mbps in the uplink and downlink,
respectively, over a bandwidth of 20 MHz. It also provides further reductions
of latencies and delays in the packet transmission.

Among other techniques, HSPA Evolution and LTE introduce multi-
antenna support, which is the principal technology for increasing capacity
in these systems. Multi-antenna techniques can be divided into three cate-
gories:

e Spatial multiplexing makes it possible to transmit several parallel
data streams over the Multiple Input Multiple Output (MIMO) link,
hence possibly increasing spectral efficiency several times. By appro-
priate signal processing at the transmitter and the receiver, the channel
can be used to serve at most min(ny,ng) independent streams, where
ny and ngi are the number of transmitting and receiving antennas,
respectively.

e Diversity techniques suppress fading by constructively adding base-
band signals from multiple antenna elements. It is common to assume
that the channels are Rayleigh fading [32]. The perceived channel af-
ter reception will feature more favourable statistical properties of the
fading than Rayleigh fading, in the sense that the fading dips will be
fewer and not as deep.

e Beamforming is a means for steering radiated energy in a prescribed
range of directions (the antenna beam), or for making a receiving an-
tenna array more sensitive to radiated energy coming from a certain
range of directions.

Spatial multiplexing uses antenna arrays on both the transmitter and receiver
sides, while diversity techniques and beamforming can be used on either or on
both sides. All these techniques require some amount of information about
the current radio channel quality (the Channel State Information (CSI)).
Techniques employed on the transmitter side require Channel State Informa-
tion at the Transmitter (CSIT), which in a Frequency Division Duplex (FDD)
system, i.e. a system using different frequency bands for the uplink and the
downlink, requires the receiver to signal CSI back to the transmitter. Time
Division Duplez (TDD) system, on the other hand, alternatingly transmit
and receive on the same frequency band. In a TDD system, the transmitter
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may therefore use channel estimates obtained from recent transmissions over
the reverse direction (the reverse link). This assumes channel reciprocity, i.e.
that the channel is the same regardless of direction.

Many MIMO techniques, as well as link adaptation and scheduling, re-
quire CSI feedback. When a UE is mobile, the reported quality indicator
will sometimes be outdated when the transmission takes place, owing to
the transmission frame structure, the feedback delay, and the computational
delays of the system. This is true for TDD as well as for FDD systems. Al-
though link adaptation is employed in 3G and in GSM, current systems do
not attempt to compensate for this effect. The alternative is to use channel
prediction, so that the reported channel quality matches the quality expe-
rienced at the time of transmission as well as possible. In this thesis, we
investigate channel prediction and estimation when optimal observers of the
time varying channel is used.

2.2 The usefulness of prediction

In a cellular system with mobile users, base stations as well as UEs will nor-
mally experience rapid changes of their received channel quality. The idea
with prediction is then for the receiver to, well in time for transmission, sig-
nal its future expected channel quality to the transmitter. The transmitter
may then opportunistically schedule UEs and/or opportunistically choose
transmission method, so as to increase link performance. However, chan-
nel predictions are always associated with a degree of uncertainty. How to
take this uncertainty into account when making scheduling and link adap-
tation decisions is very difficult to say in general, because it depends on the
scheduling algorithm and on the available transmission methods.

In a MIMO system with flat fading channels, i.e. channels that fade
equally for all frequencies, the total ng-by-ny MIMO channel can be de-
scribed by a matrix H. The channel estimator calculates an estimate ’Hest
based on as recent noisy measurements as possible, while the predictor pro-
duces a prediction ﬂpmd which is based on somewhat older measurements.
Different transmission techniques will place different requirements on Hey
and ﬂpmd.

To use spatial multiplexing, the channel estimation 'Hest has to be very
accurate. Although ’I:lest is not available at the time of prediction, we will see
that the accuracy of the estimate can be calculated beforehand. It is in this
way possible to decide whether to use spatial multiplexing. The expected
capacity and performance of spatial multiplexing is given by the eigenvalues
of the matrix HesH",,, whose distribution can, in principle, be calculated

est?

from the predictions [35] [36].
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When the channel quality is too low for spatial multiplexing to be used,
beamforming may still be employed. If the channel estimate is of high quality,
then the link performance when combining beamforming at the transmitter
and the receiver is dictated by the largest eigenvalue of HegH?,,, whose distri-
bution can be derived from the predictions. Beamforming on the transmitter
side requires some degree of CSIT. Optimal beamforming from ny transmit
antennas to a receiving antenna, in the sense that the received signal power
is maximized under a constraint on transmitted power, is given by scaling
the signal transmitted from the respective antennas with weights equal to h*,
where h is the ny channel coefficients and (-)* indicates complex conjugation.
This requires the full feedback of (an accurate estimate of) the channel. To
enable the use of a more modest amount of feedback information, the trans-
mitter may have a predefined set of antenna weight configurations (beams)
from which one can be selected, based on the channel estimation performed
by the receiver.

The SNR for the beamformed link is approximately a factor ny higher
than for the corresponding SISO link. A similar array gain can be achieved
on the receiver side without the need of channel prediction, if the receiver
has multiple antennas.

The choice of MIMO technique offers a tradeoff between on the one hand,
increasing the data rate by multiplexing many streams in parallel, and on
the other hand, multiplexing fewer (or only one) streams, which are trans-
mitted over more “stable” channels, with better fading statistics. For a given
multiple antenna transmission technique, link adaptation can then be used
to further increase performance. Channel prediction will then need to be
employed for making appropriate link adaptation decisions.

In modern systems and systems proposals such as LTE, WINNER, and
WiMAX, link adaptation is now being used increasingly and over shorter
and shorter time scales. Furthermore, as MIMO techniques are gaining a
wider interest, the need for higher quality channel estimates and predictions
is becoming evident. Also, recent research investigates the prospect of using
Coordinated Multi-Point transmission (CoMP), i.e. letting multiple base sta-
tions cooperate when communicating with UEs. This potentially increases
the system delays so that longer prediction ranges have to be used. These
issues make channel prediction increasingly important.

As previously noted, cellular systems are interference limited, and all
decisions regarding beamforming and spatial multiplexing come with an in-
terference penalty for other UEs. A scheduling strategy that provides close
to optimal performance is therefore very complicated to design. The main
focus in this thesis will not be on answering how to take decisions regarding
link adaptation and transmission techniques, but rather on how to produce
the predictions that necessarily underlie such decisions.
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2.3 Channel models

Efficient channel estimation and prediction in wideband systems necessitate
the modelling of broadband frequency selective radio channels. The channel
impulse response in the passband is time-varying for a mobile receiver and
can be written as a sum of components that have different propagation delays
{7}, due to reflections or scattering in the transmission environment [32]:

N
c(r,t) = Z e D5 (r — 1), (2.3.1)
n=0

where the factor a,e=?*"® is the complex fading amplitude of path n. Each
path is characterized by a real-valued path gain «,,, a phase angle ¢,(t), and
a propagation delay 7,,. We have here assumed that the model is valid over a
short period of time, and that the number of paths, IV, the path gains, and
the propagation delays are independent of time over this period. The phase
angle for a path will however generally be time varying and can be expressed
as

¢n(t) = 27ch7n(t) — ¢p, (t), (2'3'2)

where f. is the carrier frequency and the contribution from the Doppler shift
for path n, with Doppler frequency fp, (¢), is

b, (1) = / o1 f, (t)dt. (2.3.3)

Each path is associated with a distinct reflector, scatterer, or cluster of scat-
terers and hence a distinct incident angle #,,. We therefore have

fp, () =vcosb,(t)/\ = fpcosb,(t), (2.3.4)

where v is the velocity, A is the wavelength, and fp is the maximum Doppler
frequency (obtained for a path aligned with the direction of movement). If
we would assume that the incident angle is constant so that 6,,(t) = 6,,, then

®p, (t) = 27 fpt cos O, (2.3.5)

but this relation will not hold in general over long intervals because nearby
point scatterers will cause 6, to vary over time which means that (2.3.5) will
contain higher order terms in ¢ [4]. Also, clusters of scatterers may cause the
Doppler frequency to be time varying.

The parameters N, {a,}, and {7,,} in the model (2.3.1) vary over a con-
siderably longer time scale than the phase angles {¢,}. As the basis of the
design of a channel estimator/predictor, we shall therefore assume that the
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passband channel can be modelled locally in time as a finite number of paths
of known propagation delays {7,} but unknown complex fading amplitudes
{an,e 9"}, The set of fading frequencies (the Doppler spectrum) may fea-
ture strong spectral components.

Multiple paths may have approximately the same delays. The sum of all
paths having delay ~ 7; is denoted a cluster and will then constitute a single
term in (2.3.1). If the number of paths, IV;, in a cluster goes to infinity and
the phase angles of these paths are independent, then the frequency distri-
bution over time for the channel coefficient ¢; £ ¢(1;,t) will be a circular
symmetric complex Gaussian distribution in the complex plane. Its squared
magnitude |¢;|? will then be frequency distributed according to an exponen-
tial distribution, while the magnitude |¢;| will be distributed according to a
Rayleigh distribution [32], see also Appendix 4.A. However, the Gaussian
distribution will also be used in the form of a probability density function to
express our ignorance as to the value of the channel coefficient ¢;. Accord-
ingly, the probability density of the magnitude will be Rayleigh distributed.
This interpretation does not mean that the frequency distribution has to be
a Rayleigh distribution, or that the number of paths in the cluster needs to
be large.

It is often convenient to use baseband representations of both the trans-
mitted signal and the channel, so that mathematical manipulations become
independent of the carrier frequency f.. The channel model (2.3.1) can how-
ever not be used as a baseband channel model straight off since its frequency
response in a region centred at f. is not necessarily the same as that centred
at 0 Hz. A proper translation in the frequency domain, that is a multipli-
cation with e~?™/<t  would therefore be necessary. However, we will here
be studying OFDM systems exclusively, in which time domain channels and
signals are transformed to the frequency domain via a discrete Fourier trans-
form. There is therefore no direct need for a baseband representation. A
factor e~2™/fet translating the baseband to the passband could be included
in the Fourier matrix F, but this is unnecessary since we shall primarily
be interested in studying covariance matrices, in which every occurrence of
a multiplication with F will always be complemented with a multiplication
with F*, effectively cancelling out the factor e=2™/<t,

2.3.1 Statistical characterization

The channel can be statistically characterized by studying the autocorrelation
function [32]

ATy, Toit, t+ At) £ E{c*(m;t)e(mo;t + Ab)}. (2.3.6)
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Table 2.1: Various channel characteristics in terms of carrier frequency f., UE
velocity v, speed of light ¢g, and sampling period ¢,. The expressions are valid in
time-dispersive environments, where the maximum Doppler frequency dominates
the Doppler spectrum. In line-of-sight scenarios, or when considering individual
beams, the velocity v should be replaced with v cos #, where 6 is the incident angle.

Wavelength A=co/fe
Maximum Doppler frequency fo=wvfe/co
Number of samples per period (based on fp) ¢o/(vfety)
Time period ¢ measured in wavelengths tfov/co

We shall assume that A.(+) is time-invariant over short periods of time and
that the scattering is uncorrelated between paths so that A.(71, 79;t1,%2) = 0
when 7 # 7. A.(-) may then be defined as a function of 7 and ¢:

Ac(, At) £ A(7,7;0, At). (2.3.7)

With the channel model (2.3.1), A.(7, At) is non-zero only for discrete val-
ues on the 7-axis but features generally continuous-time functions depend-
ing on the time dynamics of the paths, e.g. Bessel functions, along the At-
axis. See Figure 2.2 for an illustration. The range over which the multi-
path intensity profile or delay power spectrum or power delay profile A.(t,0)
is essentially non-zero is called the multipath spread T,,. Its reciprocal
(Af). = T;', which is the range over which the spaced frequency correlation
function 72 A.(7,0)e">™/7dr has essential support, is called the coherence
bandwidth. Similar measures exist for the At direction. Integrating over T,
we define the spaced time correlation function

A(AL) & / h A (1, At)dr. (2.3.8)

The range over which A.(At) has essential support is called the coherence
time (At).. Its reciprocal By = (At)!, which is the range over which the
Doppler power spectrum ffooo A(At)e ?mIAL At has support, is called the
Doppler spread. The Doppler spread is dictated by the maximum Doppler
frequency of the system, which hence is an important parameter. It can be
expressed in terms of UE velocity and carrier frequency. Table 2.1 lists the
maximum Doppler frequency as well as some other useful characteristics for
fading channels.

Studying OFDM systems, it is convenient to characterize a channel in
terms of the multipath spread and the Doppler spread. The value of the
former indicates the delay difference of the significant transmission paths
that contribute to the channel. Each us of relative delay corresponds to a
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Figure 2.2: The autocorrelation function A.(7, At) for a channel described by the
specular model (2.3.1) with three multipath components (clusters). Each multi-
path component here experiences fading according to Jakes’ model [37],[32]. Their
spaced time autocorrelation functions are therefore Bessel functions.

path difference of 300 m, so typical values for T, is up to 10 us in urban and
suburban areas, and up to 30 s in rural hilly environments.

A worst case value for the Doppler spread is the maximum Doppler fre-
quency which scales linearly with the carrier frequency and the receiver’s
velocity. As a simple rule of thumb, with a 3 GHz carrier, the worst case
value of B, (measured in Hz) is ten times the velocity (measured in m/s).

An important characteristic used in the design of an OFDM system is the
size of the time-frequency region over which the channel is essentially static.
It is approximately given by (At).(Af). = (T,,Bq4) ™!, and is typically a few
thousand Hz-s.

2.3.2 Two channel models

Here we present two channel models that will be used throughout the thesis.

The WINNER II C2 NLOS channel

The WINNER II C2 non-line-of-sight channel[38], used within the WINNER
IT project [39], is designed to represent a suburban macro-cell environment
where the BS antenna is clearly above surrounding buildings. It represents
a situation with non-line-of-sight (NLOS) propagation paths only. Each in-
dividual path is assumed to be Rayleigh fading, and the fading of all paths



Chapter 2. Wireless communications 21

Table 2.2: Power delay profile of the WINNER. IT C2 NLOS channel model. To
each of the 24 clusters correspond a propagation delay and a total power for the
paths that constitute the cluster.

cluster no. 0 1 2 3 4 5 6 7 8 9 10 11
delay[ns] 0 60 75 145 150 155 150 190 220 225 230 335
power|[dB] -6.4 -3.4 -2.0 -3.0 -5.2 -7.0 -1.9 -3.4 -3.4 -5.6 -7.4 -4.6
cluster no. 12 13 14 15 16 17 18 19 20 21 22 23
delay[ns] 370 430 510 685 725 735 800 960 1020 1100 1210 1845
power[dB] -7.8 -7.8 -9.3 -12.0 -8.5 -13.2 -11.2 -20.8 -14.5 -11.7 -17.2 -16.7

are uncorrelated. Its power delay profile (PDP) is listed in Table 2.2, and

the PDP is plotted along with the spaced frequency correlation spectrum in
Figure 2.3.

oF Jl l J ‘ 00
L
f & 05
Q
'E = -10p
3 =
5 -lof 3 -isp
2 g
& = -20f
~15F 5
3 -5t
=]
B
o0l -30
. . . .
o 5.x107 1.x107° 15%107° -2x10° -1x10° 0 1x10° 2x10°
delay[s] J[Hz]
(a) (b)

Figure 2.3: Power delay profile and spaced frequency correlation function for the
WINNER II C2 NLOS channel model [38].

The -3 dB coherence bandwidth is about 4 MHz for this model, as can
be seen from Figure 2.3. From Table 2.2 we see that 90 % of the total power
is collected within about 450 ns, which by the relation (Af). = T,,' would
suggest a coherence bandwidth of a little less than 2.5 MHz. The exact value
of the coherence bandwidth is a matter of definition.

The WINNER I B1 NLOS channel

This channel model was defined within the WINNER I project[40]. It is
defined for outdoor environments where both the BS antennas and the UE
antennas are below surrounding buildings. We use this channel model to be
consistent with reference [41], whose results we will build upon in Chapter
7. The power delay profile for this channel model is described in Table
2.3. Although the original model attributes non-zero-mean values to some
of the paths, i.e. some paths have Rice components, we will not use any
Rice components in our investigations. The PDP is plotted along with the
spaced frequency correlation spectrum in Figure 2.4. The -3 dB coherence
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Table 2.3: Power delay profile of the WINNER I B1 NLOS channel model. To
each of the 7 clusters correspond a propagation delay and a total power for the
paths that constitute the cluster.

cluster no. 0 1 2 3 4 5 6
delay[ns] 0 10 40 60 85 110 135
power[dB] -1.25 0 -0.38 -0.10 -0.73 -0.63 -1.78
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Figure 2.4: Power delay profile and spaced frequency correlation spectrum for the
WINNER I B1 NLOS channel model.

bandwidth is about 8 MHz for this channel model, as can be seen from
Figure 2.4. This is in agreement with the multipath spread; 90 % of the
total power is collected within about 120 ns.

2.4 OFDM

Orthogonal frequency division multiplexing (OFDM) is a technique in which
a large number of narrowband subchannels are transmitted in parallel over a
large bandwidth. The technique allows for maximally dense packing of these
subchannels. OFDM has been chosen as radio access technique for the LTE
downlink, and for both uplink and downlink in the WiMAX standard [42].
OFDM was also used in the WINNER radio concept (uplink and downlink).
OFDM is therefore the transmission technique to be studied in this thesis.
A main advantage of OFDM is that equalization of frequency-selective chan-
nels becomes almost trivial, since the channel from one transmit antenna to
one receiver antenna within each narrowband subchannel can be expressed
as a scalar complex gain, see Section 2.4.2. Furthermore, in multiuser sys-
tems that use link adaptation, the radio resource may be divided into small
time-frequency resource blocks that can be allocated to different users, using
different link adaptation parameters. This allows the variations of fading
channels to be exploited, making OFDM an attractive technique in such sce-
narios. On the downside, OFDM is sensitive to frequency offsets and requires
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a comparably complex receiver architecture.

In Single Input Single Output (SISO) OFDM, the data stream to be
transmitted is mapped onto symbols from a finite symbol alphabet (in general
in combination with e.g. encoding and bit-interleaving to make the signal
robust to errors). The symbols are then divided into groups of length N.
These N-vectors are regarded to lie in the frequency domain, so that each
element in a vector sy corresponds to one subchannel. Each vector s; is then
processed by an IFFT to a vector F*sy of length N, where F is the Fourier
matrix (see below). A “cyclic prefix” of length Nop is added. A digital-to-
analog converter transforms the sequence of length (N + Ngp) into an analog
signal, which modulates the carrier. On the receiver side, an analog-to-digital
converter produces the corresponding sequence of length (N + Neop), now
noisy and distorted by the channel, after which the cyclic prefix is removed.
Studying one of the received sequences after cyclic prefix removal, omitting
time indices, we can write the received signal yyme of length N as

Yiime = cire([g” Orev—p])F*sy +w, (2.4.1)

where g is the baseband channel impulse response of length I, s; is the
frequency-domain symbol vector of length N, and w is a white Gaussian
noise vector of length N with covariance matrix o2Iy. The subscript (-)¢
indicates that we are here considering the full bandwidth of N subchannels.
The operator cire(+) is defined as

Co C1 C Cn—1
Ch—1 Co C1 Cp—2
circ(feper ey .. cq1]) = " : " : (2.4.2)
C1 cp €3 --- Co

so that circ(al) is a square circulant matrix whose first row is a, and the

N-by-N Fourier matrix F is defined as
Fli,j]= N~V 2mii/N -0, .. N—-1,j=0,...,.N—1, (24.3)

which implies that FF* =L

Applying an FFT to the received signal yiime, we use the eigenvalue de-
composition of a circulant matrix,

circ(a) = F* - diag(N'*Fa) - F (2.4.4)
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to get the frequency-domain signal

Yr= fytime
= F(circ([g" Oixv—p))F sy +w)
— FF*-diag(hy) - FF's; + Fw (2.4.5)

= diag(hy)s; + vy
= diag(sf)hf + vy,

where hy = N'2F[gl" 0y, (y_y]" is the channel frequency response for the
N subchannels, and v; = Fw has covariance matrix o2Iy, where 02 = o2,

Note that (2.4.5) holds for a single link, i.e. one transmit antenna sending
to one receiving antenna. In Chapter 4 we will extend the discussion and con-
sider MIMO OFDM systems. This is useful for modelling channels between
BSs and UEs equipped with antenna arrays. In OFDM uplinks, multi-input
modelling is furthermore useful for modelling multiple UEs sharing the same
radio resource. Also, in the downlink, multi-input modelling can be used
to model Coordinated Multipoint Transmission (CoMP), where several BSs
cooperate in transmitting to a UE.

2.4.1 Dimensioning and design of an OFDM system

The realistic worst case scenario of the channel’s characteristics dictates how
an OFDM system is normally dimensioned. First, the cyclic prefix needs to
be longer than the largest expected multipath spread of the channel in order
for the system to capture the energy from all propagation paths within one
OFDM symbol. Hence we would set the length of the cyclic prefix to the
maximum realistically expected multipath spread in the types of environ-
ments for which the transmission system is designed. The energy contained
in the cyclic prefix will however be discarded at reception (unless some al-
gorithm to collect part of this energy is used), so the length of the OFDM
symbol needs to be considerably longer, say about ten times longer, than
the length of the cyclic prefix, in order to limit the relative power loss (or
overhead) due to the cyclic prefix. Finally, the bandwidth of a single sub-
channel is given by the reciprocal of the OFDM symbol duration (without
cyclic prefix). The fact that the OFDM symbol duration is selected to be
much longer than the multipath spread means that the coherence bandwidth
will greatly exceed the bandwidth occupied by a subchannel. This means
that a symbol stream transmitted over a subchannel experiences flat fading.
Table 2.4 lists the OFDM symbol duration and subchannel bandwidth for a
few example OFDM systems.

The symbol carried by a single subchannel of an OFDM symbol is some-
times referred to as a channel symbol or a time-frequency symbol. In this
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thesis we will use the notion sub-symbol. The location for a sub-symbol,
identified by its subchannel and OFDM symbol indices, will be referred to
as a sub-location.

Note that, since the bandwidth of a subchannel is the reciprocal of the
OFDM symbol duration, the “size” of a sub-symbol, i.e. its duration times
its bandwidth, is precisely equal to 1 (without physical unit). In fact, a sub-
symbol constitutes exactly one complex degree for freedom of the channel.

2.4.2 Equalization

The transmitted symbols need to be retrieved from noisy received data. Since
each subchannel is subjected to flat fading, the only part of the channel
affecting the received sub-symbol on sub-location { f, ¢} is the complex-valued
channel coefficient iy, for that location:

Yge = NpeSpe + Vg, (2.4.6)

where sy, is the unknown transmitted sub-symbol that we want to retrieve,
and vy, is noise. The most common and direct approach to equalizing the
channel is simply to invert the received signal with some estimate ;Lf,t of the
channel:

S=h"Yy=h"'hs+h v =h" (h+h)s+h v =s+h " hs+h v, (2.4.7)

where, for brevity, we have excluded the {f,t} subindexing, and h is the
estimation error h — h. Here, § is a “soft” estimate of s and forms the input
to the detector. Clearly, the total noise contribution has two sources: one
from the noise v and one from the estimation error i. The estimate (2.4.7)
is called the least squares (LS) estimate of s.

The LS equalization is suboptimal in the sense that it does not take into
consideration the variances of v and s. An alternative to LS equalization
is to form the minimum mean squares error (MMSE) estimate (cf. Section
3.1):

il*
|h|? +03/03
Here, 02 and o2 are the variances of s and v, respectively. Inserting (2.4.6)
into (2.4.8) and using the simplified notation, we see, after some algebra,
that

SMMSE = (2.4.8)

hh* — o2 h*
+ —= S+ — v,
|h|? 4 o2 |h|2 4 o2
where 02 = ¢2/0%. The noise terms are now slightly different from those in
(2.4.7).
We will assume LS equalization in this thesis because of its simplicity
compared to MMSE equalization.

SMMSE =S (2.4.9)
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Table 2.4: OFDM symbol duration and subchannel bandwidth for the WINNER II radio concept FDD and TDD modes ( WIN
II FDD and WIN II TDD, respectively), and the downlink for the LTE standard, using a short preamble and a long preamble
(LTE short preamb. and LTE long preamb., respectively).

7 WIN II FDD WIN II TDD LTE short preamb. LTE long preamb.

OFDM symbol duration|us] 25.6 20.48 ~66.7 ~66.7
subchannel spacing [kHz| ~39 ~49 15 15
cyclic prefix duration [us] 3.2 2.0¢ ~4.7b ~16.7

2A switching time interval of 8.4 us is added at the end of each time slot of 15 OFDM symbols.
*In a time slot of 7 OFDM symbols, the first CP is slightly longer (~5.2 us)
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(a) WINNER II FDD mode

(b) LTE DL, short preamble

= £

(¢) WINNER II TDD mode

(d) LTE DL, long preamble

Figure 2.5: Pilot patterns for a few systems. The grids illustrate the sub-locations
for pilots(gray) and payload data(white). The LTE patterns refer to the pilot lay-
out used per transmitting antenna, so that when multiple transmitting antennas
are used, they use similar but non-overlapping patterns. Frequency runs verti-
cally and time runs horizontally. One square symbolizes one OFDM symbol times
one subchannel. The OFDM symbol duration and subchannel bandwidth for the
respective systems are listed in Table 2.4.

2.4.3 'Training

To facilitate channel estimation and prediction, known reference sub-symbols
are distributed across the time-frequency grid. A minimum requirement on
the placement of these sub-symbols, that we will refer to as pilots, is that
the spacing in frequency is narrower than the coherence bandwidth, and that
the spacing in time is shorter than the coherence time. Figure 2.5 shows the
pilot patterns used in a few example systems.






Chapter

Linear filtering and inference theory

This chapter presents fundamental results in linear estimation theory needed
for conducting channel estimation and prediction in later chapters. We will
stress the usefulness of interpreting the outputs from channel estimators and
predictors as a complete state of the knowledge that is acquired from noisy
channel measurements. The foundations for interpreting probabilities as a
state of knowledge is here presented, in Section 3.2. Readers that are already
acquainted with this interpretation of probability may just skim over this
section. In Section 3.4, we present fundamental results for Kalman filter
theory that will be useful later in the thesis. Again, readers familiar with the
subject may skip this Section at this moment and return to specific results
as they are needed.

3.1 A channel model

In this thesis we shall be concerned with estimation and prediction of un-
known radio channels. The two are closely related, so to simplify the exposi-
tion we will initially restrict the discussion to channel estimation. To begin
with, we must describe the relationship between some kind of measurement
y and the unknown channel(s) h. As a first illustration, we will take the
model

y=0h+v (3.1.1)

to be an appropriate description of reality. The term v stands for unknown
additive white Gaussian noise (AWGN), however with known covariance ma-
trix R,,. We assume that the v and h are uncorrelated. The regressor matrix
® is also assumed known, as well as the covariance matrix Ry, for the prior
distribution of h.

Channel estimation and prediction theory has a somewhat backwards

29
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approach to modelling; it is the channel that is the desired “signal”. The
transmitted signals, which are included in ®, merely serve as an aid for esti-
mation. With this approach, known “reference” signals have to be transmit-
ted at the time-frequency sub-locations where the channel estimation takes
place. Once an estimate has been obtained, it can be inter- or extrapolated
to sub-locations where unknown payload data reside.

The objective is now to calculate an estimate h of h of highest possible
accuracy, based on a measurement y. The probably oldest approach, going
back to Legendre and Gauss, is to form the estimate that produces the least
possible power for the noise v, i.e. to choose h such that

ly — @h|* < ||y — ®hl)* (3.1.2)

for all h € C*, where n is the dimensionality for h. Given in most textbooks
on linear estimation, the solution follows from differentiating ||y — ®h||?> with
respect to h and finding the root. It is usually referred to as the least squares
(LS) solution. Assuming ® to be a matrix with full rank, it is given by

hps = (O°®) 0%y, (3.1.3)

where (-)* denotes Hermitian transposition.

The LS estimate can be improved upon by taking into account the prior
knowledge that we have about h and v. Based on our above stated prior
information of the properties of h and v (the matrices Ry, and R,), we
below attempt to find a linear estimator h= Koy, where Kj is in general a
matrix that minimizes the error variance. Let R;, £ E{hh*}, R, £ E{yy*},
R, = E{vv }, and Ry, = Ry, = E{hy*}. We also assume E{h} = 0 and
E{v} = 0. Then we obtain

E{(h - Ko)’)(h - KOY)*} =

) . R, R
R;, — R, K) — KRy, + KoR,Kj = [T —Ko] [th R’“’] [ } =
Y 0

I
K

e N o | i S | R 1 ] -
) -
0)-

— Rhleleyh 0
0 R R Ryh
R;, — Ry, R, 'Ryr + (R R, — Ko)R, (R, 'Ry, — K

I RyR;'— K [Rh
(3.1.4)

In the above, we have used block triangular matrix factorization (see Ap-
pendix 3.A.1). Assuming that R, > 0, it follows that (3.1.4) is minimized
when Ko = Ry,,R;". The correspondlng channel estimate, denoted the mini-

mum mean square error (MMSE) solution is h= RhyRy y. From the model
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(3.1.1) we have that Ry, = R;,®* and R, = PR, ®* + R, assuming that h
and v are uncorrelated. Inserting these, we find the MMSE solution to be

h = R,®* (PR, " + R,) 'y (3.1.5)
with mean square error (MSE)
E{(h—h)(h—h)"} =R, — Ry R, 'Ry,

: (3.1.6)
= Ry, — R,®*(dR,®* + R,) ‘DR,

The above derivation (3.1.4) does not reveal the full power of the results
(3.1.5) and (3.1.6) and how they go beyond the estimate (3.1.3). What the
MMSE estimator gives us is actually a full description of our state of knowl-
edge about the quantity h. Common statistical theory, which talks about
unknown quantities as random wvariables and sees probabilities as imagined
frequencies, does not allow us to clearly see this. In the following, we will
refer to this classical interpretation of statistics as orthodoz statistics or fre-
quentism. An alternative formulation of statistical theory, which regards
probability theory to be a direct extension to logic, however offers an inter-
pretation of the probability concept that bears a direct correspondence to
available information. This theory is commonly referred to as Bayesianism.
It shows us how to calculate a representation of our state of knowledge about
a parameter of interest (h), given some information (y) and background in-
formation (the model (3.1.1) plus covariance matrices). In the next section,
we give a short account on Bayesian probability theory.

3.2 Bayesianism

In this section we will give a brief account on Bayesian probability theory.
The two main tools in Bayesianism — Bayes’ theorem and marginalisation —
are presented, as well as the general method for conducting inference accord-
ing to the Bayesian school. We also take the opportunity to point out a few
differences in method between orthodoxy and Bayesianism. The ambition is
however not to give a comprehensive review of Bayesianism. We have previ-
ously given the subject more attention in [43], and we encourage interested
readers to read the book by Jaynes [44].

3.2.1 Probability

Probability theory operates on propositions, which we denote by capital let-
ters. A proposition is described by a statement, for example A=‘the Earth
is orbiting the Sun’, and by declaring A we declare that that statement is
true. Propositions conform to the axioms of logic:
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not not A is equivalent to A
Aor B is equivalent to B or A
Aor A is equivalent to A

Aor (BorC) isequivalent to (Aor B)orC
not (A and B) is equivalent to mnot A or not B
Aor (Aand B) isequivalent to A

Using these axioms, a complicated chain of statements can be simplified to
a shorter and simpler form. The axioms of logic are however only helpful in
conducting deductive reasoning in which no element of uncertainty exists. In
real-world situations, statements of any sort can rarely be declared as being
absolutely true or absolutely false. Rather, we may know that a proposition
A is likely to be false, or that B is probably true. To be useful in practice, it
would therefore be highly desirable to be able to extend the axioms of logic
to hold also for such vague information.

The first steps to pursue this goal were taken more than two centuries
ago by Bayes and Laplace. In the 1930s, the theory was refined by Harold
Jeffreys, and then, in 1946, Richard Cox published a paper which proved that
probability theory can be seen as an extension to logic. Cox [45] introduced
the concept of plausibility'. Plausibility is a general measure of degree of
belief. The plausibility of a specific proposition will vary depending on what
other propositions we know to be true. For example, it is more plausible that
it is freezing outside if we know that it is winter, than if we are ignorant to
the time of year. In accordance with a notation introduced by John Maynard
Keynes in 1921, we will denote plausibilities by

A|B, (3.2.1)

meaning the plausibility of proposition A given that proposition B is true.

Bayesian theory defines a probability as a state of knowledge, whereas
in orthodox probability theory, probabilities represent observed or imagined
limiting frequencies. Cox aimed to show that rules for probability theory
interpreted in the Bayesian sense — rules that by the time of Cox already
had been employed as axioms by several generations of workers in the field
— could be derived from the axioms of classical logic by only adding a few
‘common sense’ requirements.

Cox stated these requirements as functional relationships between plau-
sibilities. Later, Edwin Jaynes [44] chose to reformulate these as verbal
statements, making the exposition easier to follow. We will adopt Jaynes’
view here, although we leave out the actual derivation.

ITo be precise, Cox really used the term likelihood, but in modern statistical theory
the meaning of that notion has shifted.
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Jaynes uses three desiderata, starting with

(I)  Degrees of plausibility are represented by real numbers.

We will adopt the convention that higher numbers correspond to higher plau-
sibilities, without further specifying the exact relationship. Jaynes discusses
other possibilities for constructing a theory for plausible reasoning, where
this desideratum is not needed. Instead he replaces desideratum (I) with two
more elementary ones where only comparisons between degrees of plausibil-
ities are needed,

(Ta) If (A|X) > (B|X) and (B|X) > (C|X) then (A|X) >

' (C]X), and

(Ib) given A, B,C, one of (A|C) > (B|C), (A|C) = (B|C),
(A|C) < (B|C) must hold,

and argues that these are equivalent to desideratum (I), see [44, Appendix
A3

The second desideratum is concerned with how plausibilities change when
new data are obtained. If old information C' is updated to new information
C’ so that the plausibility for A is increased,

(A|C") > (A]O), (3.2.2)
while the plausibility for B stays the same,
(B|A,C") = (B|A, C), (3.2.3)
then common sense says that
(A, B|C") > (A, B|O), (3.2.4)

and that

(A|C") < (A|C), (3.2.5)
where A denotes the logical complement of A, that is the proposition that
is always true when A is false and vice versa, and A, B means that A and

B are both true. The above ‘common sense’ requirements are expressed by
desideratum 1T :

(IT)  Qualitative correspondence with common sense.



34 3.2. Bayesianism

The third desideratum is divided into three statements, all having to do
with the consistency of the theory :

If a conclusion can be reasoned out in more than one
(Ila)  way, then every possible way must lead to the same re-
sult.
We must always take into account all of the evidence

available that is relevant to the problem.
Equivalent states of knowledge must always be repre-
sented in the same way.

(I1Ib)

(11c)

Somewhat surprisingly, these three desiderata are all that is needed to
derive a consistent theory for plausible reasoning. Although the scale of the
plausibility measure is completely arbitrary, Cox’ derivation revealed that
one can define functions operating on plausibilities, such that these functions
need to conform to quantitative rules. The most convenient is a function P(-)
that fulfills

P(A, B|C) = P(A|C)P(B|A,C) = P(B|C)P(A|B,C) (The product rule)
P(A|B) + P(A|B) =1 (The sum rule)

The function P(A|B) is termed the probability of A given B. It has the
additional property that P(‘true statement’) = 1 and P(‘false statement’) =
0.

Summarizing, we have the following definitions:

Plausibility is a measure of belief isomorphic to the real
numbers, so that the plausibility can be either increased,
decreased or unaltered by new information.
Probability is a monotonic increasing function of plau-
sibility and obeys the product and sum rules, necessi-
tated by Cox’s desiderata.

An important point often neglected in the literature is that the func-
tion P(-) is not in any way a more correct probability definition than some
monotonously increasing mapping ¢(-) = f o P(-). However, P has quali-
ties that make it preferable to other functions apart from the fact that the
sum and product rules look attractively simple. Knowing that there are, say,
seven red and three white balls in an urn, then our choice of function P gives
a probability 3/10 of a white ball being drawn. This certainly seems a sound
property for a definition of probability. In fact, Laplace used this property
as the definition of probability:
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The probability for an event is the ratio of the number of cases
favorable to it, to the number of all cases possible when nothing
leads us to expect that any one of these cases should occur more
than any other, which renders them, for us, equally probable.

We shall therefore adopt the same definition and choose the function P as
the definition for probability. One should however keep in mind that specific
probability values only possess relative meaning when connections to frequen-
cies cannot be made. Probability values can only tell whether a proposition
is more or less plausible than some other proposition.

For it is important to note that the present theory makes no references
to repeated experiments, observed frequencies, or hypothetically observed
frequencies. The definition of probability used here applies to all kinds of
propositions. Since the rules of probability follows directly from logic and
the three desiderata, probability according to Bayesianism is therefore an
extension of deductive reasoning.

Bayesianism also differs from orthodox probability theory in that there
is no such thing as an unconditional probability in Bayesianism. Whereas
one according to the orthodox school can talk about P(A), Bayesianism will
always require us to specify what information is available. Even if no cogent
evidence for A is present, there will always be some background information
at hand, such as a mathematical model and/or some vague, uninformative
prior probability distribution. We shall generally denote such prior informa-
tion by the symbol I.

Continuous variables

When conducting inferences about a continuous parameter 6, as most scien-
tific problem formulations would require us to do, we may define a mutually
exclusive set of propositions

Hy, = kA0 <0 < (k+ 1)A0, (3.2.6)

where Af is the size of the intervals represented by the propositions. We can
then define a function p(A|I) so that

P(H|I) = p(0|1)A8, 0 = kA6. (3.2.7)
Letting the number of propositions go to infinity, so that Af goes to an in-

finitesimally small interval df, p(8|I) becomes the probability density function
(pdf) of . From recursive application of the sum rule we see that a pdf must
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have the property that
p(0|I) > 0, and that
/ p(O|1)do = 1.

oo

In the above, we have assumed that 0 is real-valued. If 6 is an element of
some other set, we would take the integral over the entire domain of 6.

3.2.2 Tools in probability theory

From the sum and product rules we may derive more useful tools. Essentially
only two tools are needed to conduct general inferential calculus. Working
from a pdf with a set of parameters to the left of the conditioning bar and
another set of parameters to the right, Bayes’ theorem is used to switch
places between parameters on the respective sides of the conditioning bar,
while marginalisation is used to remove parameters from the left side of
the conditioning bar. Appropriately combining these two tools allows us
to produce a pdf that has parameters of interest on the left side of the
conditioning bar, and available data on the right.

Bayes’ theorem

By a simple rearrangement of the product rule, we get Bayes’ theorem:

P(D|X, 1)

P(X|D,I)=P(X|I) PO

(3.2.8)

Bayes’ theorem describes how to update our state of knowledge about a cer-
tain proposition X when we get some data D that is related to X in some
way. That is to say, starting with a representation of our prior knowledge
P(X|I), reception of information D lets us update this to P(X|D, I). Usu-
ally, we will have some physical relationship between X and D which makes
it easy to say what we know about D given that X is true (P(D|X,I)).
Bayes’ theorem is then used to switch places between these propositions.

Bayes’ theorem applies equally well to probability density functions as it
does to probabilities:

p(ylz, 1)

plaly. 1) = plal )P

(3.2.9)



Chapter 3. Linear filtering and inference theory 37

Marginalisation

For a set of mutually exclusive and exhaustive propositions Hy, Hs, ..., Hx
we can write

P(A, Hi|I) + P(A, Ho|T) + ...+ P(A, Hg|I) = P(A[I). (3.2.10)

In the limit it holds that
p(z|I) = /p(x,0|f)d9. (3.2.11)

The parameter 0 that was eliminated by this so called marginalization is
called a nuisance parameter. Nearly every problem in probability theory
requires the use of marginalisation in this way to remove parameters that
are useful as intermediate parameters but are not of interest in the final
result.

Change of variables

It is common that a pdf p(x|I) is known but that we want to know a pdf
p(y|I) where x and y are related through some known functional relationship
y = f(x). We then need to perform a change of variables. Of course,
changing variables is not a method exclusive to bayesian probability theory,
but we mention it here because of its common usage in the field. It holds
that[46]

a(.’El, v ,.I'm)

x=f-1 5 3.2.12
a(y17~~;yn) | =1(y) ( )

p(y|1) = p(x|1) \

8(1‘1 ..... :Em)
O(Y1,..-sYn)
y, respectively. To take an example, let

is the Jacobian and m and n are the dimensions for x and

where ‘

p(z|l) =1, 0<z<l1, (3.2.13)
and let y = 22. Then
dzr dr
D) =pa|])|—||oey = ———|oe sz = (dy)~1/? 1.
p(ylI) = p(z[I) a7 o=y = g le=vy = (y) 77, 0<y <
(3.2.14)

Changing variables can become very complicated if the functions involved
are multidimensional and/or the mapping from x to y is not one-to-one.
The type of notation “p(x|I)” is unorthodox from a mathematical point
of view in that x is not only the free variabel in the function p(x|I), but
also a part of the function name. What if we want to evaluate p(z|I) at the
point x = y? How do we express it? p(y|I) will not do, because that would
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refer to a totally different function, namely the distribution for the variable .
p(‘x = y’|I) could work but it would not mean the same thing as p(‘y = 2'|I),
which would seem strange. To avoid confusion in such situations, one should
use a temporary function

fne(z) = p(z|I), (3.2.15)

thus eliminating the risk for ambiguous meaning.

3.2.3 Priors

Looking at the product and sum rules on page 34, it is evident that a pdf
can only be deduced from other pdf:s. Hence there is the need for prin-
ciples that can produce the initial distributions required to “get started”.
These initial pdf:s must be based on — and only on — whatever information
we have beforehand. Such information is sometimes very vague and difficult
to describe in quantitative terms. So how do we calculate prior probability
densities (or simply priors) when seemingly there is almost no prior infor-
mation available? There are a number of principles available, see e.g. [43] for
a few examples. In the present thesis, the issue of prior assignment will be
restricted to priors for fading radio channels. Assuming that a good estimate
of the covariance matrix Ry, for a multidimensional channel h is available,
we invoke the mazimum entropy principle [44] which says that the least in-
formative prior distribution that we can assign given this particular piece of
information is zero-mean Gaussian:

p(h|T) = CN'(h; 0, Ry). (3.2.16)

This is in fact the only prior we will need. One may object to the prior
(3.2.16) in that it assigns non-zero probability to any value of h, no matter
how high. In practice there must be an upper bound to h. However, trun-
cating the Gaussian would yield a non-Gaussian prior distribution, and this
would lead to calculatory problems, as we shall see later. The prior (3.2.16)
is therefore partly motivated on practical grounds.

3.2.4 How to make a decision

Priors define a ‘starting point’ of an inference problem. Then, through the
use of Bayes’ theorem and marginalisation, we may produce a ‘post-data’
(posterior) pdf for the parameter that we are interested in. But what do
we do with this pdf? The answer to this question depends on what type
of answer we ultimately seek. The perhaps most common type of inference
problem is the point estimation, in which we want to extract one single
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value from the posterior pdf. So, given the posterior pdf, which value do
we extract? Value judgment inevitably enters the theory at this point; our
estimation strategy will depend on what we are prepared to lose if we happen
to make the wrong guess. The theory behind all this is called decision theory
and it is a large field on its own. Looking for the estimate 6 of a parameter 6,
we construct a loss function L(0), é) that quantifies the loss associated with
making the wrong guess. One possible and common choice is then to choose
the estimator f that minimizes the expected loss

(/lX&éﬁ(ﬂD,Ud& (3.2.17)

The quadratic loss function
L(0,0) = (0 — 0)? (3.2.18)

is by far the most commonly employed criterion and is reasonably the optimal
criterion to use in repeated scenarios, which typically arise in digital com-
munications problems. Minimizing the quadratic error conforms to choosing
the mean value of a pdf as estimate for that parameter,

0 = /9p(9|D,I)d9, (3.2.19)

which minimizes the expected value of the error (6 — 0)2.

Note however that using the quadratic loss function is not always appro-
priate. For example, in estimating the amount of rocket fuel that is required
to take an astronaut to the Moon and back, we want the estimate to be as
small as possible but not too small. A slight overestimation is alright, but
an underestimation would be disastrous. Also, # may not be an element in
a metric space, in which case the error (§ — )% cannot even be defined. To
illustrate, let € be an element in a discrete set of models. Based on evidence
D, we wish to decide which model is the correct one. The difference between
two models however cannot be appropriately defined, and so (3.2.18) cannot
be used.

3.2.5 Model selection

So far we have considered assignment of prior pdf:s, the manipulation of pdf:s
by means of marginalisation and Bayes’ theorem, and taking a decision from
a posterior pdf. In most problems of inference however, we have a set of
data from which we wish to draw conclusions. It is then necessary to have a
model which relates the measured data D to the parameter(s) of interest 6:

D = f(8,€). (3.2.20)
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Additional nuisance parameters £ are also in general included in the model.
The posterior p(f|D, I) can now be constructed by using the tools of prob-
ability theory and the principles for assigning priors. A general scheme for
Bayesian inference can be summarized as follows:

1. Construct a model (3.2.20),
2. assign priors,

3. use probability theory to derive the posterior pdf for 6 given whatever
information is available, and

4. invoke decision theory to produce an answer to whatever question was
asked.

But then, how do we know how to set up the model in the first place?
Imagine that we have a set {M}} of candidate models, and that we want
to evaluate them against one another based on evidence D. Using Bayes’
theorem, we have

p(D| My, I)

(3.2.21)
The set of models is discrete, so we will choose the model that gives the
highest value of the posterior P(My|D, I). This corresponds to using a loss
function that attributes the same penalization to every wrong estimate. Since
we only want to compare the probabilities of the different models we do not
need to calculate the denominator p(DI|I). Also, in most cases we would
assign equal values to all prior probabilities P(Mj|I). Thus we have

P(My|D, 1)  p(D| M, I). (3.2.22)

The right-hand-side is usually called the likelihood of M), and is sometimes
denoted L(Mjy). Although marginalisation over a few nuisance parameters
may be required, L(M},) is usually much easier to evaluate than the proba-
bility P(M|D,I).

Somewhat dishearteningly, there exists no formal procedure for model
selection. That is to say, once we have established a particular set of models,
then probability theory provides us with the means of telling which one is
best suited given a set of measurements, but we are still left in the dark when
it comes to choosing the original set {Mj}.

The model selection process therefore consists of first choosing a set of
models, and then evaluating the likelihood for each model given a set of data.
Taken that all models are assigned the same prior probability, we choose the
model that gives the highest likelihood.
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3.2.6 The methods of frequentism and Bayesianism

Problems of inference? come in many different forms of which the most com-
mon ones are sampling theory, hypothesis testing, and parameter estimation.

Sampling theory is the theory of determining the probabilities for out-
comes (samples) in data series, discrete or continuous. Sampling theory is
seldom relevant to Bayesianism, except in the sense that sampling distri-
butions often occur inside calculations. It is however central to orthodox
statistics; in order to find the most likely values of some model parameters
given some data, the orthodox statistician uses sampling theory to calculate
the probability for the data that was actually received, as a function of the
model parameters, and then searches for the values of those parameters that
maximize the probability. This principle is called the mazimum likelihood
principle. When no cogent prior information is available, and when the size
of the error in the final guess is irrelevant, the maximum likelihood solution
coincides with the Bayesian solution.

Hypothesis testing is the procedure of deciding which model that best
describes a given set of data. Model selection is an alternative name for
the same thing, although model selection often refers to estimation of the
model structure, while hypothesis testing usually concerns values of fixed
parameters in the model.

Parameter estimation is, as the name strongly indicates, the estimation
of one or many parameters from given data. Its output can either be specific
values, in which case one talks about point estimation, or intervals, which is
called interval estimation.

All problems of inference begin with a model relating the parameters of
interest with the data and possibly additional nuisance parameters,

D = f(6,¢), (3.2.23)

where the measured data D, the parameters of interest 6, and the nuisance
parameters & are generally vector valued.

The general method for obtaining information about # varies depend-
ing on whether one confesses to the frequentist or the Bayesian school. In
frequentist theory, which method to use depends on the type of problem,
whereas in Bayesianism the same procedure for inference is applied regard-
less of the type of problem. Bayesianism therefore has one single approach to

2Inference theory’ in normally distinguished from ‘decision theory’; In Bayesianism,
the inference part of a problem is to produce the posterior of the parameter under consid-
eration, whereas the decision part amounts to determining the course of action from the
posterior. For an engineer it is of little interest to produce a pdf without any concrete
suggestion to a course of action coming out of the calculations, and so here we will be
careless about the terminology and talk about ‘inference’ when we mean the joint process
of inference and decision making.
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inference, while frequentism consists of a large number of methods. Below fol-
lows a short summary of methods used in the respective camps. Bayesianism:

1. Determine the model and the prior distributions.

2. Use the tools of probability theory to derive the posterior distribution.
In sampling theory the posterior is often given directly by the model and
the prior. Estimation and hypothesis testing often requires application
of Bayes’ theorem and marginalisation.

3. Investigate the posterior to produce the sought-after result. Point es-
timation is performed through the use of a loss function integrated
over the posterior (see Section 3.2.4). Interval estimation amounts to
finding an interval of the posterior distribution (usually the shortest
interval possible) having a certain area. Hypothesis testing can be seen
as a special case of parameter estimation. In hypothesis testing, it is
mostly common to choose the hypothesis having the highest probabil-
ity. It is equivalent to using a loss function that ascribes the same loss
to errors of any size. This estimate is called the Mazimum A Posteriori
(MAP) estimate.

Frequentism:

e Point estimation of a parameter 6 is commonly performed by using
intuition to invent an unbiased estimator é(D) which is a function of
data D. It is then adjusted so that its mean value over the sampling dis-
tribution, [ 0(D)p(D|01)dD, equals the parameter value #. Note that
this may be quite different from the Bayesian least mean squares esti-
mate, [0p(0|D,I)dd. Other orthodox parameter estimation methods
include the maximum likelihood method.

e Interval estimation also starts by inventing an estimator é(D) The

sampling distribution p(f) is then calculated. Technically, this is done

by a change of variables, p(6)dd = p(D|0)dD. Lastly, one finds the
least interval over which this distribution has an area of 0.9 or so.

e Hypothesis testing relies on a number of significance tests, for exam-
ple the x2-test. The maximum likelihood method is another method,
which — if no cogent prior information is available and the loss function
prescribes the same value to any error, regardless of its size — produces
the same answer as the Bayesian approach.

Frequentist theory requires the division of model parameters into random
variables and deterministic but unknown parameters. Only random variables
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are allowed to have pdf:s. There exists no formal procedure for categorizing a
parameter as either random or deterministic. Conventionally, measured data
is taken to be random variables while all other parameters are considered de-
terministic. A rule of thumb is therefore to let that which is known (the data)
be random variables and let all other parameters — those that are the subject
of the inference in most cases — be deterministic. Conversely, the concept of
random/deterministic parameters bears no meaning in Bayesianism.

3.2.7 Why Bayesianism?

After this somewhat lengthy excursion into Bayesianism, one may enquire as
to what the significant difference between Bayesianism and classical statistics
actually is. After all, the rules of probability are the same in both schools.
Is not then the confession to one or the other merely a matter of ideology
with little practical relevance?

Actually, conclusions reached by the Bayesian method can be totally dif-
ferent from those attained by using conventional methods. Whereas infer-
ences drawn with aid of the Bayesian method is guaranteed to be consistent
with logic, orthodox statistics may leave you with unreasonable results. A
few examples were presented in [43]. The differences tend to be especially
large when cogent prior information is available. In the present thesis we
will study inferences of radio channels where new measurements are made
available on a regular basis, so that prior information quickly becomes ob-
solete, but there are still a number of reasons for choosing Bayesianism over
frequentism:

e Bayesianism always produces a full representation of one’s state of
knowledge (the pdf). This provides a quality measure of the infer-
ence in terms of how uncertain it is. The pdf is also necessary when
the parameter of interest has some complicated functional relationship
to parameters whose pdf has been found, so that a change of variables
need to be performed. With conventional statistical tools, an estimator
of the parameter of interest may have to be invented from intuition,
which may be very difficult to do, and the quality of such an estimator
cannot be guaranteed.

e Bayesianism offers one single method for inference. Orthodoxy offers
many, and they generally yield different answers.

e Bayesianism does not equate probabilities with frequencies of any sort.
A frequency distribution is a measurable quantity just as any physical
property, so that a Bayesian can talk about pdf:s for frequency distri-
butions. This is useful in a context such as digital communications,
where frequency distributions abound.
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o We will later be interested in examining the behaviour of channel esti-
mates of a special kind. These estimates are based on a certain amount
of data, but we will have to infer them before all of this data is avail-
able. Omne could say that we are interested in a parameter 6 given
evidence Dy, given evidence D,. A framework like Bayesianism that is
always specific about background information will serve us well when
conducting inference in involved problems like these.

e A central element in the Kalman filter, that will be studied shortly,
is a matrix that we will denote by the symbol P;. In Bayesianism,
this matrix is straightforwardly interpreted as the covariance matrix
for the posterior distribution of the so called state vector, allowing it
to be used as an uncertainty measure or for changing variables. In
orthodox statistics however, the interpretation of P;, depends on the
nature ascribed to the state vector. If the state vector can be said to
be of a random nature, then Py, is interpreted in the same way as in
Bayesianism, but if the state vector is said to be deterministic (e.g. if
it is known to be constant), then Py, is not allowed this interpretation.
This is a pity, because it may withhold from us the opportunity to
conduct inferences that are consistent with logic.

3.3 The MMSE solution

Returning now to the problem of finding an estimate h of h in (3.1.1), we
apply Bayes’ theorem and find

p(hly, I) o< p(y|h, I)p(h|I)
=CN(y; ®h,R,) x CN'(h; 0, Ry)

} (3.3.1)
o exp (—5 ((y — ®h)*R,'(y — ®h) + h*Rhlh)> ,

where CN(+) is the multivariate circular symmetric complex Gaussian dis-
tribution defined in Appendix 3.B.1. Note that we have saved ourselves the
trouble of calculating the denominator p(y|I) in Bayes’ theorem since it is
independent of h and therefore just constitutes a normalization factor. If
needed, the proper normalization factor can at any time be calculated from
the exponent of the Gaussian distribution. By completing the squares with
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respect to h, we obtain

p(hly, I)

1
exp (—5 (h*®*R,'®h + h*R;'h — y*R,'®h — h*®*R, 'y + y*vay)>
1
= exp (-2 (h*(®*R;'® + R, )h — y*R,'®h — h*®*R 'y + y*R;ly)>
1 N N N N
— exp (-2 ((h ~h)'R;'(h—h) - h'R;'h + y*R;ly)> (3.3.2)

where h = (*R;'® + R;)"'d*R; 'y and R ' = ('R, '®+R;"). Hence,
the posterior of h is

p(hly, 1)
=CN(h;(R,' + 'R, '®) '&*R 'y, (R,' + ®*R,'®) ) (3.3.3)
= CN(h;R;,®*(®R;,®* + R,) 'y, Ry — R, ®* (PR, ®* + R,) '®Ry).

(3.3.4)

In the last equality, we have used (3.A.5) and (3.A.7) in Appendix 3.A.2.
The MMSE solution is given by the mean value of the pdf (3.3.3) or (3.3.4).
The latter is the most common formulation of the MMSE solution, consistent
with (3.1.5) and (3.1.6).

The formulation (3.3.3) is sometimes referred to as an information form
of the MMSE filter. When R, ' = 0 in (3.3.3), which means that no relevant
prior info is available, and R,, = oI for some variance o2, so that the noise
is white with equal variance in all of its components, the MMSE solution
coincides with the LS solution (3.1.3), as is easily seen from the information
form.

The MMSE solution is a very powerful result in that it is a fairly simple
expression and uses all available data in an optimal manner. However, since
it requires multiplications and inversions of matrices of size N, where N is
the length of the measurement vector y, its complexity is O(N?), which may
be extremely high. Moreover, if new data arrives so that y grows, then the
MMSE solution as expressed by (3.3.4) and (3.3.3) does not immediately
provide us with a way to incorporate this new data without carrying out
the calculation all from the beginning. Furthermore, the vector of channel
coefficients h may also be growing with time. In channel estimation and pre-
diction, incorporation of new data is essential, so we will require a framework
that allows a periodic addition of new evidence and parameter space without
the complexity of the algorithm growing out of proportions.
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3.4 Inference based on state space models

Throughout this thesis we shall let a linear discrete-time state space model
describe a time varying multidimensional channel h;:

Xi1 = FXt + Gut, (341)
ht = HXt, (342)

with the measurements described by
Y = q)tht + Ve = JtXt + Vg, (343)

where J, = ®;H. The process noise u;, the measurement noise and interfer-
ence vy, and the initial state xq are multivariate circular symmetric complex
Gaussian, and

u

ul | Qi; 0 0 0
E{|vi| || }y=[ 0o Rs; 0 0], (3.4.4)
X0 J
xo) |} 0 0 II 0

where Q > 0, R > 0, and II > 0.

Comparing the state-space model (3.4.1), (3.4.2), (3.4.3) with the static
model (3.1.1), we may consider the case where h and y in (3.1.1) correspond
to a single time step in the state-space model. The advantage of the state-
space model is then that it takes into account earlier measurements that aid
in the estimation of h.

More interestingly, we may consider the case where h and y comprise sev-
eral time steps in the state-space formulation, so that e.g. h = [hi, ... hI]"
and y = [yd,...,y/]". The optimal estimate of h is given by the mean
value of (3.3.4) with the covariance matrices R;, and R, and the regressor
matrix ® being given implicitly by the state-space model, but this comes at
a considerable computational complexity (cubic in the length of y).

It has been shown that fading radio channels can be well represented by
linear dynamic models [47],[4]. The reason for letting a discrete-time state
space model represent the fading radio channel is practical; the state-space
model expresses the channel in a way so that the next state depends only on
the current state. In the next section we will see how this property allows
optimal inferences about the channel state to be drawn in a recursive way, so
that the numerical complexity of optimal channel estimation and prediction
is linear in the number of measurements (to be compared with the cubic
complexity of the MMSE estimator in Section 3.3).

As the state space model is motivated on practical grounds, so is the
choice of Gaussian priors with known covariance matrices for the processes
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{w:}, {v:}, and x¢, because these properties have to be assumed to allow for
an optimal inference formulation. One could certainly argue that the pdf:s
for some or all of these processes should have upper bounds over which they
should have no support, but that would lead to non-Gaussian distributions,
which, as we will see presently, would prevent recursive inference to be carried
out.

In the following discussion, the equations (3.4.1)—(3.4.4) constitute our
prior information I.

3.4.1 Optimal estimation

The state vector x; represent the full dynamics of the channel h;. We there-
fore wish to infer the state vector from available measurements, and this
should be done in an iterative manner, so that p(x;|yo, ..., ¥, I) can be up-
dated to p(X11|yo, - - -, ¥Yir1, 1) when a new measurement arrives. Following
[48] and denoting {yo,...,y:} = Y,, we find by the use of Bayes’ theorem
and marginalization that

p(Xe1|Yer1, I) = p(Xepalyers, Ye, I) =
P(Yer1[Xer1, Ye, 1)
p(xXe41]Y, 1) Py Yo, D) =
P(yerXern, Dp(xesa|[Ye, 1)
S p(yesalxepr, Dp(xea | Yo, Ddxiyy
fp(Yt-H |Xt+1, I)p(Xt+1|Xt, [)p(Xt|Yt, [)dXt
S p(yesalxerr, Dp(ealxe, Dp(xe| Yo, dxidxey

(3.4.5)

We have expressed the original pdf p(x;,1| Y11, ) in terms of p(yyi1|%¢a1, 1),
which is given by the measurement equation (3.4.3); p(X¢y1|x¢, I), which is
given by the state equation (3.4.1); and p(x;|Yy, I), which we assume is
known, since we seek a recursive update of the distribution for the state
vector. By the model (3.4.1)—(3.4.4), all these pdf:s are Gaussian. The
multiplications, integrations, and division in (3.4.5) will preserve Gaussianity
so that also p(x¢11|Ys41,I) is Gaussian and can be written on the form

p(%41[Yiq1, I) = CN (%415 Xt 1)t415 Pt+1|t+1)- (3.4.6)

We therefore seek to find the mean value X;41;11 and the covariance matrix
Piiajer-

In the above, observe the notation that we will use throughout this thesis:
in subscripts of the type t|ty, ¢ indicates the current time while ¢y indicates
that measurements up to and including time %, is available.
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Carrying out the marginalizations in (3.4.5) using the result of Appendix
3.B.2, we find

p(Xt+1|Yt+1a I) =
(/CN(YtH% Jiixeq, R) X CN(Xt+1§ Fx,, GQG*)
X CN(Xt; fit\t, Pt|t)dxt)/</ CN(Yt+1§ Jir1Xer1, R)

X CN(Xt+1; Fxt, GQG’*) X CN(Xt, )A(t‘t, Pt‘t)dxtdxtﬂ) =

CN(yt+1; Jt+1xt+1, R) X CN(Xt+1; F)A(ﬂt, FPt|tF* + GQG*)
CN(yis1; Tt Fxye, I (FP, F* + GQG*)J;, + R)

(3.4.7)

It should be noted that the fact that the above marginalization could be
carried out symbolically leaned on the assumption of linear models (3.4.1),
(3.4.2) and (3.4.3), as well as the assignment of Gaussian distributions to
{w:}, {v:}, and x¢. Non-linear models and/or non-Gaussian distributions
for the processes {w;}, {v:}, and xq would generally permit a symbolic cal-
culation of p(x41|Yia1, I).

By completing the squares with respect to x;;; in (3.4.7) along the lines
of [48], yields, after quite some algebra,

Xepiferr = FXge + AJy (T Ay + R) M (ye1 — Ji1F%y,), and
Pijprn = A — AJ (T AT + R)'Ji1A,,
(3.4.8)

where Ay = FP,,F* + GQG*. By (3.4.6), the pair (X;11j041, Pra1jr1) de-
fine the probability density function for the state vector at time ¢ + 1 given
measurements up to and including time ¢ + 1.

Again, since we have used only the rules of probability we know that
(3.4.8) is in every way consistent with logic. The solution illuminates a
couple of facts. Firstly, if the process {h;} can be modelled on state space
form, we see that there does exists an expression that lets us carry out the
update

p(Xt|Yt,I) —>p(Xt+1|Yt+1,I). (349)

Secondly, the model matrices {F, G, J;, Q, R} are allowed to be time varying
without impacting the optimality of the algorithm. In our case, we shall only
require J; to be time varying.

The solution (3.4.8) is given by the Kalman filter (KF) which R. Kalman
derived in his seminal 1960 paper, although he used a somewhat different
approach.



Chapter 3. Linear filtering and inference theory 49

3.4.2 A geometric formulation

The calculations leading to (3.4.8) is tailored to the specific problem of finding
the pdf for x; given measurements Y,. If we would be interested in a slightly
different formulation, say to find the pdf for x;,19, then we would have to
carry out a corresponding derivation, using Bayes’ theorem all over again.
In later chapters, we will require a flexible framework that will let us derive
pdf:s for channel estimates and predictions for arbitrary prediction ranges.
Instead of using Bayes’ theorem and marginalization, pdf:s may be derived
using a geometric approach [49], which is more appealing to intuition and will
prove to be very flexible. Recall that an inner product obeys the following
rules:

1. Linearity: (a1X1 + aoXo,y) = a1(X1,y) + a2 (X2, y)
for any oy, an € C.

2. Reflexivity: (x,y) = (y,x)*.
3. Nondegeneracy: (x,x) =0 < x =0.

Noting that the cross-correlation operation E{xy*} conforms to these rules,
we define the inner product

(x,y) = B{xy'}. (3.4.10)

This inner product lets us regard unknown vectors as elements in an inner
product space. A couple of facts should be noted regarding the inner product
(3.4.10):

e (x,y) is generally a rectangular matrix.
e x and y need not have the same length.

That is, all vectors, regardless of length, live in the same inner product space
with inner product defined according to (3.4.10). We stress the rather un-
usual fact that this inner product is not scalar, which is otherwise a property
that is assumed for inner products by most textbooks and papers. Among
the sparse literature that do consider matrix-valued inner products, see e.g.
[50]. Inner product spaces are normed spaces and we define

I 2 (x, ). (3.4.11)

A norm can then be defined as a Cholesky factor of ||x||?, e.g. the unique
lower triangular Cholesky factor. However, we shall only find use for the
squared norm and so we do not need to uniquely define a norm.
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With this formalism, covariance matrices can be handled algebraically as
inner products, which provides convenient tools for manipulation of signals
and optimization of estimates.

In the above, we are actually allowing ourselves a small degree of careless-
ness regarding notation. In Section 3.2.1 we were eager to point out that it is
central to Bayesianism to be specific about what information underlies an in-
ference process. Yet, when defining the inner product (3.4.10), no such speci-
fication was made. In most uses of the inner product notation it will however
be clear what the background information is. When we speak of vectors that
are not estimates of other vectors we will be referring to prior distributions, so
that for example (x;, u;) = E{x;u;|/}. When we operate on vectors referring
to estimates, the background information is defined by the variable names
themselves, e.g. (Xyio)—1,Xpp1pe-1) = E{&t+2‘t,1>kf+1|t_1|Yt_1,]}. The care-
less notation does however illuminate another fact: the inner product space
is not actually home to vectors such as x and y, but rather to probability
entities such as (x|I) and (y|I), i.e. vectors in combination with background
information. Whereas a “normal” (Euclidean) vector space can house vec-
tors all having the same length, an inner product space of the kind presented
here can contain vectors (probability entities) of different lengths, but only if
they all have the same background information I.

In accordance with the MSE minimization (3.1.4) we will seek an estimate
X of a vector x, expressed as a linear combination of the measurements, that
minimizes the mean value of the error

X2x—%x (3.4.12)

With the geometric formulation of the problem, the optimal estimate is then

the projection of the parameter of interest onto the subspace spanned by
given data:

x = projection of x onto L{yo,y1,- .-, ¥}, (3.4.13)

where £{yo,¥1,...,¥:} is the linear subspace spanned by {yo,y1,..., ¥t}
By construction, this means that (Xx,%) = 0.

The concept of projection suggests the use of the Gram-Schmidt pro-
cedure. The Gram-Schmidt procedure finds an orthogonal basis {e;} that
spans the same subspace as a generally non-orthogonal set of vectors {y;}.
Once this basis has been found, finding a projection is a simple matter of
summing the individual projections of the vector onto the respective base
vectors:

t
%= (x,e)R_]e;, (3.4.14)

where R, ; = ||e;||.
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In the Gram-Schmidt procedure, the orthogonal basis {e;} is found by
iteratively forming normals to hyperplanes spanned by earlier base vectors:
€ = Yo,
_ ~1
e =y1 — (y1,e0) R, peo,
€ =y — <Y2,61>R;%el - <Y2,eo>R;(1)eo7
€3 =Yy3 — <y3,e2>R;§e2 — <)’3761>R;}el - <Y3760>R;(1)eo,

and so on. The number of terms seems to be growing with time, but owing
to the state space formulation we can write

t—1 -1
€ =Yyt — Z<Yt;ei>R;ilei =y.—J; Z<Xt7ei>Re_)ileia (3.4.15)
i=0 i=0

where we have exploited the measurement equation (3.4.3) which gives that
(yi,€;) = Ji(x¢,€;) (note that x, and e; do not generally have the same
length). The sum in (3.4.15) is identified as

t—1
Z<Xt7 ei>R;i1ei = proj(xt, 5{3’07 e 7Yt—1}) £ Xt\tfly (3-4-16)
i=0

where proj(x:, £L{yo,...,yi-1}) is the projection of x; onto the linear sub-

space L{yo,...,yi1} so that

e =yr — JiXg1- (3.4.17)

The process {e;} is called the innovations. By construction, the innovations
are white: (e;,e;) = 0, @ # j. The innovations form an orthogonal basis
spanning the same subspace as the measurements, i.e.

LYoy} = Lleo,... e} (3.4.18)

for any t. Since X¢p1p € L{eo, ..., e}, it holds that (X;1;,€;) = 0 when
1> 1.

Letting the parameter of interest, x, be the state vector one time step into
the future, that is x;,1, we see from (3.4.14) that the optimal estimate X1,
is a function of e; (and earlier innovations), while e, in turn is a function of
Xyi—1. It is therefore possible to find a recursive update

Xp-1 —~ € — X0 € — X1 — ...

Projecting the one-step predictions onto the innovation vectors, we see that
we can write
t t—1

X1t = Z<Xf+1’ e)R_je; = Z(xtﬂ, e)R_ e+ (xip1, )R jep. (3.4.19)

=0 =0
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From the state equation (3.4.1) we see that (x;,1,€;) = F(x;, ;) so that
fct—}—llt = F)A(t‘t_l + F<Xt7 et>R;tlet. (3420)

Optimal one-step predictions are therefore found by starting with an initial
prediction Xg—; and then alternately compute innovations (3.4.17) and pre-
dictions (3.4.20). It remains to calculate (x;, e;) and R, which should also
be done in a recursive manner. The key to doing this is to express the two
quantities in terms of the covariance matrix for the one-step estimation error,
[%eje—1 2.

First, note that by (3.4.3) and (3.4.17) we can write

e = JXy—1 + vy (3.4.21)
Defining
[1%sj20 1> = P, (3.4.22)
it then follows that
Het||2 =JPyJi +R (3.4.23)

and, by linearity of the inner product,
(X1, €0) = (Kype—1 + Xgpp—1, JiXg—1 + Vi) = Py J7. (3.4.24)

We now require a recursion for Py,_;. To find this recursion, we make
the following definitions:

Definition 3.4.1 (Covariance matrices for the state vector and state esti-
mate vector). The covariance of the state vector is defined as

I 2 x| (3.4.25)
The covariance of the state estimate vector is defined as
Yitjto £ ||)A(t\to||2' (3.4.26)
Defining
Ky, £ <Xt7et>R;t1 (3.4.27)
and
K, £FKj,, (3.4.28)

we can then easily prove the following theorem:

Theorem 3.4.1 (Recursions for the state and one-step state prediction
covariance matrices). Consider Definition 3.4.1 and the model (3.4.1)-(3.4.4).
Then it holds that

I, = FILF* + GQG*, (3.4.29)

and that
S = FEp 1 F* + K Re K4 (3.4.30)
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Proof. The recursion (3.4.29) follows from (3.4.1) and the fact that (x;, u;) = 0.

The recursion (3.4.30) follows from (3.4.20) and the fact that (X;;—1,€;) = 0.
O

Since (Xyj¢y, X¢jto) = 0, it must hold that
Ht = Et\to + Pt\t(y (3431)

Using Theorem 3.4.1 and (3.4.31) for the special case tg = t — 1, we get a
recursion for Py:

Pt+1|t = Ht+1|t - Zt+1\t
=F(1 — Zyge ) F"+ GQG™ - K, R K, (3.4.32)
- FPt|t_1F* + GQG* - Kp,tRe,tK;t-

We can now summarize the Gram-Schmidt procedure in the form of the
KF recursions (3.4.23), (3.4.28), (3.4.17), (3.4.20), and (3.4.32):

Re,t = JtPtJ: + ].:{,7
Kp,t - FPt‘t_lJ:Ril

e,t)
€ =Yyt — th(t\tflv
X1 = FXyo1 + K ey,
Pt+1|t = FPt\tle* + GQG* - Kp,tRe,tK*

Dt

initialized with known prior mean value Xo_; and prior error covariance
matrix Pg_;. As an extra measure of convenience, the procedure can be
divided into a measurement update step and a time update step:

e Kalman gain calculation:

Re,t = JtPtJ;k + R (3433)
Ky = Pt\tflJ:R;tl (3.4.34)

e Measurement updates:
e =y — Xy (3.4.35)
Xyt = Xeje—1 + Ky ey (3.4.36)
Py = (I —-KjfJ;) Py (3.4.37)

e Time updates:

Xer1e = FXye (3.4.38)

Py = FPy F* + GQG” (3.4.39)
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From the Kalman recursion we may also easily derive a recursion for the
filtered state estimation vector:

)A(t+1|t+1 = F)A(ﬂt + Kf7t+1et+1 (3440)

as well as a recursion for the covariance matrix for the filtered state estimation
error vector:

Pt+1|t+1 — FPtItF* + GQG* - Kf,t+1RE,t+1K},t+1~ (3441)

When studying channel estimation and prediction, it may be of interest
to generate channel estimates/predictions from channel measurements. It is
then useful to rearrange a few equations in the KF recursions and formulate
a state space model for the state estimates:

ye = JiXe1 e
Note however, that the “process noise” and “measurement noise” in this
model is the same process {e,;} with covariance matrix R. .

3.4.3 Prediction and smoothing

The state equation (3.4.1) makes KF prediction trivial. Assuming t > t,
optimal predictions are found recursively by

to

to
)A(t+1‘t0 = Z<Xt+1|t0, eﬁR;}ei =F Z<Xt|t0, ei>R;Z-19i = F)A(t‘to, (3443)
=0

=0

and we assume that the filtered state estimation X, is known. When the
state transition matrix F is time static, we have that

}A(t‘to - tht(]f(to‘to. (3444)

The recursion for the many-step state prediction covariance matrix follows
directly from (3.4.43):
Zt—ﬁ-l‘to - th‘toF*7 (3445)

initialized e.g. with ¥, 41;, which is given by Theorem 3.4.1.
The many-step state prediction error covariance matrix is also calculated
recursively:

Pt = [Xes1s || = |FXupo + Gui||? = FPy F* + GQG*,  (3.4.46)

initialized e.g. with Py, 14, obtained with (3.4.32).
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In Chapter 7, we will need to know the prior pdf for a predicted state
vector Xy,. Since the process noise u,, the measurement noise v, and the
initial state x, are zero-mean processes, it follows that E{x;, |/} = 0. The
state prediction covariance matrix is given by (3.4.45). The prior pdf for
predicted state vector can then be written

p(xt‘to |I) = CN()A(t‘tO, 07 Et‘to)' (3447)

The case t < t is called a smoothing problem. Kalman smoothing is not
as straightforward as prediction and there are many variants to smoothing
formulas. In this thesis, we will only be interested in calculating the state
covariance matrices, which we find with the Bryson-Frazier formulas [51],
presented here without proof:

Py =Pyio1 — Pyi1 Ay 1o P, (3.4.48)
where A, is calculated recursively in reversed time through
AT7tO - F;TAT“rl,ton,T + J:R;_}_JT, At0+1,t0 - O, (3449)

with F; defined by
F,,=FI-Kj;.J,). (3.4.50)

With the Kalman recursions and the prediction and smoothing formulas,
the full pdf of a state vector x; given measurements up to and including time
to are given by the mean value X,;, and the covariance matrix Py,:

Z)()(tly()7 o Yo I) = CN(Xt, )A(t|t07 Pt|t0)~ (3451)

3.5 Summary

In this chapter we have shown that inferences derived with the tools of prob-
ability theory are consistent with an extended logic. The Kalman filter (KF)
was shown to be a special case of such inference. We also took the opportu-
nity to derive the KF from a geometric approach, which hopefully gave the
reader an intuitive feeling for the ubiquitous usefulness of the KF. So long
as a fading channel or a sum of fading channels can be described on linear
discrete-time state space form, the KF will always output a complete rep-
resentation of our state of knowledge regarding the channel(s). This makes
the KF an incredibly flexible instrument that can be used in many sorts of
intricate problems. And our needs will be intricate; in Chapter 5, we consider
irregular training signal designs (referred to as pilot patterns shortly), which
necessitates the use of time-variant filters; in Chapter 6, we consider the re-
ception of simultaneous signals coming from multiple sources, meaning that
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superpositions of signals need to be modelled and inferred; and in Chapter
7 we study how probability density functions produced by the KF should be
used properly.
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3.A Some matrix results

3.A.1 Block triangular factorization

[‘é g} , (3.A.1)

where A and D are invertible. Then it holds that
A B| |I BD'| [A-BD'C 0 I 0
C D| |0 I 0 D| ([DIC 1|’

Consider a block matrix

(3.A.2)

which is easily verified by carrying out the multiplication. The quantity
A — BD'C is called the Schur complement to D. Since

I BD']' [I -BD! I o] I 0
[o I ] - [o I } and {ch 1} - [—ch I]’
(3.A.3)
we may also easily derive a block factorization of the inverse of (3.A.1):

3L e 2B T
(3.A.4)

3.A.2 The matrix inversion lemma and variants

For non-singular matrices A and C it holds, given that all matrices have
appropriate dimensions, that

(A+BCD)'=A"'—~A'B(C"'+ DA 'B)"'DA"". (3.A.5)

This result, commonly referred to as the matriz inversion lemma (or the
Woodbury matrix identity), is so commonly used in linear algebra that is
sometimes called just “the lemma”.

A simple rearrangement of (3.A.5) gives the following result:

B(C'+DA'B)"'D=A - A(A+BCD)!A (3.A.6)
The following result will be useful:
(A+BCD)'B=A"'B(C'-DA'B)"'C™. (3.A.7)
This can be proved as follows:

B+ BCDA 'B=B +BCDA'B
BC(C' +DA'B)= (A + BCD)A'B
(A+BCD)'B=A"'B(C'+DA'B)"'C™
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In a similar manner,
CD(A +BCD) ! =(C'+DA'B)"'DA, (3.A.8)
which follows from

D +DA'BCD =D + DA'BCD
(C'+ DA 'B)CD = DA"!(A + BCD)
CD(A +BCD)'=(C' +DA'B)"'DA ..

3.B Properties of the Gaussian distribution

3.B.1 Definition

The multivariate circular symmetric complex Gaussian (sometimes just Gaus-
sian for short) distribution for x € C™! with mean value p € C"*! and
positive definite covariance matrix ¥ € C"*" is defined by

CN(x: 11, %) 2 7[5 exp (-é(x )Y (x— u)) . (3B1)

3.B.2 Marginalization

Consider a multivariate Gaussian parameter vector x with mean value Ap
and covariance X, and that we are uncertain as to the value of . We assign
a Gaussian distribution to p with mean value p, and covariance ¥,. What
is then the distribution for x? Carrying out the marginalization, we have

p(X|peg, A, 3,50, 1) = /CJ\/(X; Ap, ) X CN (5 pro, Xo)dp

1 e e
x fe | <5 | (Ar =2 AR =) 4 (0 ) S ) | | i

c

(3.B.2)

Examining now the exponent (except the factor -1/2) ¢, we can complete the
squares and write it as

c= (- ) (ASA+ 5 a)
—af(A*STTA + 5 N+ X i+ i Yg ty, (3.B.3)
B
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with a = (A*S A+, 1) L (A*SIx+3; ). Carrying out the integration
over p, the first term in (3.B.3) evaluates to a constant independent of x and
to- The remaining three terms (3 can be written

B=x"(T - STAAYTA + ) AT )X
+ Syt — Sy (ATETIA + 505 T g
—xX*'YTTAAS A + 25 I
— S (AT TTA + 55 ) TTATE T x

(3.B.4)

Using (3.A.5), (3.A.6), and (3.A.7) on the respective terms in (3.B.4), we see
that
B=(x—Apy) (B +ASA") " (x — Apy) (3.B.5)

so that

p(x|pg, A, 3,30, 1) = CN (x5 Ay, X+ AYpAY). (3.B.6)






Chapter

Modelling MIMO-OFDMA systems

4.1 Introduction

Modern wireless cellular system concepts should be general enough to sup-
port user equipments (UEs) with a wide range of data transfer requirements,
ranging from relatively simple devices requiring only a very limited transfer
rate, to advanced devices with the need for supporting high speed data trans-
fer. A UE in such a system is characterised by a large number of factors, such
as its Signal-to-Noise Ratio SNR, its speed, its power availability, the num-
ber of antenna element it uses, its channels’ frequency selectivity and fading
characteristics, its hardware complexity, and so on. This diversity makes
system design complex. Using different frequency bands and transmission
techniques for different kinds of UEs is an option, but the sheer number of
relevant characteristics makes that kind of solution unnecessarily inflexible
and wasteful with the bandwidth resource.

Furthermore, with the introduction of MIMO techniques combined with
opportunistic scheduling and link adaptation in wireless cellular systems, the
need for simultaneously supporting many UEs with widely varying charac-
teristics over the same frequency band is becoming evident. Whereas one
UE may be stationary (nomadic) and indoor, featuring a frequency-selective
but non-fading channel, another may have a high velocity and line-of-sight.
Differences in requirement, complexity, and power availability may cause
one UE to prefer a low output power and/or sending few reference symbols
(henceforth pilots) while another may prefer sending many, possibly with
high power.

To support channel equalization, link adaptation, and scheduling, the
unknown fading radio channel needs to be inferred. Methods for channel
estimation may be blind or pilot assisted. Throughout this thesis we shall
assume pilot assisted channel estimation and prediction. To enable separate

61
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estimation of channels from multiple transmit antennas (henceforth inputs),
which is required in MIMO systems, a straightforward approach is to use
disjoint sets of pilots for all inputs and all UEs. A problem is however that
each input will then occupy somewhere between 5 and 10 percent of the
resources, and this could quickly lead to training data taking over the whole
bandwidth.

A different approach is to place pilots from different inputs at the same
sub-locations, hence letting them overlap. The drawback of this approach is
an increased filter complexity and possibly a reduced estimation and predic-
tion performance. The advantage is that pilot overhead will not be affected
by the number of tracked inputs.

A filter that tracks signals from multiple inputs needs to take into account
as much information as possible about each and every input. Given the
many characteristics describing each input, the number of different MIMO
filters that would be needed to adress every possible combination would be
extremely large, making the use of a lookup table infeasible. Moreover,
because of differences in coherence time, UEs should probably use filters
of varying temporal extensions; a stationary UE should look far back in
time when inferring the channel since it is nearly static, whereas the channel
measured by a fast-moving UE will quickly get outdated, meaning that a
short filter will suffice.

Thus there is the need for an algorithm that can be fed with all the
information describing such things as channel fading characteristics and pilot
arrangements, and from this produce a filter of appropriate length suited for
channel estimation and prediction for the multiple inputs.

This is precisely what the Kalman filter (KF) recursions can do. Not only
does the KF constitute the optimal channel estimator /predictor given input
characteristics, but it does so also during the “transient” phase when these
characteristics change.

In this chapter we present in detail how to model a multi-input OFDM
system and how to use the model in a KF. The purpose is twofold. First, we
want to examine the prospects of using the KF as an actual channel estima-
tion/prediction implementation. For this purpose, we analyze the numerical
complexity of the KF towards the end of the chapter. We will also study
an alternative KF formulation that generally has a lower complexity than
the standard KF formulation. We find however that this variant of the KF
does not necessarily decrease numerical complexity in the present context.
Second, we want to use the KF as an instrument for analyzing a system’s
limits of performance.

Along with the optimal channel estimate/prediction, the KF also pro-
duces a measure of uncertainty about the estimate. This measure of un-
certainty bears a direct correspondence to system performance. Also, the
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Figure 4.1: Schematic illustration of a multiuser MIMO system.

uncertainty measure is in fact data-independent and is therefore a function
of the system parameters only. This means that conclusions about system
performance (or rather upper bounds on system performance) can be drawn
directly from the system model, without the need for conducting simula-
tions. By setting up a state space system representation from the UEs char-
acteristics and then studying the KF, quantitative conclusions about system
performance can be drawn.

We consider a Multiple-Input Multiple-Output Orthogonal Frequency Di-
vision Multiplexing (MIMO-OFDM) system. OFDM alleviates the problem
of multipath propagation by dividing the system bandwidth into many nar-
rowband flat fading subchannels. Relatively easily extendable to MIMO sys-
tems, MIMO-OFDM has therefore become a popular choice of transmission
technique in modern wireless multiuser systems where multipath propagation
is a major issue.

The present chapter shows, step-by-step, how to construct a state space
representation of time-varying MIMO-OFDM channels. Such a representa-
tion can be used to represent fading channels for point-to-point transmission
when the transmitter and/or the receiver are(is) equipped with array anten-
nas. It can also be used in situations where multiple UEs are communicating
with a BS over the same radio resource, so that the inputs are distributed
among a set of different UEs. Also, the framework presented in this chapter
can be used to model fading channels in a Coordinated MultiPoint (CoMP)
setting, where a single UE is receiving signals from multiple BSs.

4.2 System model

The baseband multiuser MIMO-OFDM model for n,, users is shown in Figure
4.1. In this context, “n, users” refers to either n, UEs communicating with
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one BS in a multiuser scenario, or to n, BSs communicating with one UE
in a CoMP scenario. Data streams from each user are mapped onto symbols
from a finite symbol alphabet using conventional techniques (encoding, bit-
interleaving, space-time block coding, etc.) and serial-to-parallel converted
to vectors of length N. Since each transmitter may be equipped with more
than one transmit antenna, the number u of received data streams is gener-
ally larger than n,. Each N-vector is processed by an IFFT to a vector of
length N and a cyclic prefix of length N¢p is added. The u inputs (transmit
antennas), which may be partitioned arbitrarily among the n, users, then
transmit the sequences of length NV + N¢p with sample period ¢, after which
each receiver antenna receives a noisy and channel distorted superposition of
the u sequences. Between transmitter and receiver, we assume a timing syn-
chronization well within the duration of a cyclic prefix, as well as a frequency
synchronization error that is much smaller than the maximum Doppler fre-
quency. The receiver antennas are in many cases separated such that all
channels fade independently. In a channel estimation/prediction context we
may then look at only one single receiver antenna without loss of generality or
attainable performance. When discussing modelling, the number of receiver
antennas are therefore irrelevant and we are in effect studying a multi-input
single-output (MISO) system. Note however that the complexity of the re-
ceiver scales linearly with the number of receiver antennas, since each of them
needs a channel estimator/predictor.

After removing the cyclic prefix, we saw in equation (2.4.5) in Chapter 2
that we can write the received sequence y; in the frequency domain as

yr= diag(sf)hf + vy, (4.2.1)

where we have excluded time indices for brevity and the subscript (-)f in-
dicates that we are here considering the full system bandwidth, in total N
subchannels. The complex-valued column vector h; represents the channel
frequency response, and the noise! v is assumed to be white, with covariance
matrix ¢2Iy. The column vector sy holds the transmitted symbols. When
receiving signals from u simultaneous inputs, we hence have the received
multiple-input (MI) signal

Yrmr = Zdzag(s})h} + vy

i=1

= ®rhyyr + vy

(4.2.2)

I'The noise term represents both thermal noise and interference from other transmitters.
The latter is appropriately modelled as white noise since the transmitted symbols are
unknown.
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The column vectors hif and si) are the frequency response and transmitted
symbols for input ¢, respectively. The matrix ® is composed of the horizon-
tally stacked matrices diag(s})}:

=1
P, = s} s . s} , (4.2.3)

and the column vector hy, ;= [(h})" ... (h)"]".

The received signal for the full bandwidth (4.2.2) has high dimensional-
ity and is computationally demanding to work with. We will therefore be
interested in considering only a small subset of w subchannels from y st
at a time. Denoting the set of indices for this subset W = {so, ..., Sw_1},
we introduce a w-by-N “extraction” matrix E, constructed so that a multi-
plication by E extracts the appropriate w elements from an N-vector. The
extraction matrix contains w ones,

Eli,si] =1, 0<i<w, (4.2.4)

and otherwise zeros. For example, if N = 16 (here we use a very small value
for N for illustration), w = 4, and W = {8,10, 12, 14}, then

0000O0OO0OO0CO1O0O0O0O0OO0OO0OT®O
0000OO0OO0OO0COOO0O1IO0O0O0OO0®O

E= 0000O0OO0OO0COOOOO01IO0O®O®O (4.25)
0000OO0OO0OO0COOOOO0OOT1®O0

The operation E diag(a)E*, where a is an N-vector, produces a w-by-w di-
agonal matrix with elements taken from a, corresponding to the indices in
W. It also holds that E*E is a N-by-N diagonal matrix with ones at the
s;:th diagonal entries, 0 < i < w, and otherwise zeros. A multiplication
from the right with E*E nulls out columns, so that AE*E is all zeros, ex-
cept for columns s, ..., s,_1 which are equal to those of A. Since a matrix
E diag(a) has non-zero columns only for columns with indices in W, it holds
that E diag(a) = E diag(a)E*E. To obtain a measurement signal y compris-
ing only w subchannels, we multiply (4.2.2) by E:

y=Ey;ur= ZEdiag(S;)hif +Evy

=1

= Z E diag(s})E*Eh} + v

i=1
= Z diag(s')h' +v
i=1

= Oh + v,

(4.2.6)
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where y, s’, h’, and v are all column vectors of length w and given by
y = Eysur, st = ES’]}, hi = Eh’J}7 and v = Evy. The matrix ®, Which'is
called to pilot matrix, is constructed as in (4.2.3), but with the vectors {s}}
exchanged for {s}, and the column vector h = [(h})T ... (h*)T]7.

We will assume that the w subchannels hold known training symbols (pi-
lots) so that @ is known. Alternatively, decoded payload information may be
used to construct ® using iterative channel estimation (ICE), see Appendix
4.D. Hence we assume the use of pilot symbol assisted modulation (PSAM).
In PSAM, known reference symbols (pilots) are intermixed with payload sym-
bols. The pilots are typically laid out according to a uniform time-frequency
grid and the channel estimation/prediction filter that is to be constructed
operates on — observes — this grid only. The channel estimates obtained
from these sub-locations are subsequently interpolated/extrapolated to the
sub-locations of all payload sub-symbols.

Note that, analogous to (2.4.5), we can write

h' = NY2EFg' = NY2F, g, (4.2.7)

where g’ is the baseband channel impulse response for input 4, zero-padded to
length N, and the partial Fourier matrix F,, = EF constitutes w rows from
F and is explicitly defined below in (4.2.23). From (4.2.6), it then follows
that

y =Y _diag(sN'*F,g' +v. (4.2.8)
i=1

Whether we will use (4.2.6) with frequency-domain channels {h'}, or (4.2.8)
with time-domain channels {g’}, will depend on the situation. In case the
time-domain representation (4.2.8) is used, we will attempt to model the
most significant taps in {g'}.

The system considered is a single user or multiuser OFDM system, pos-
sibly MIMO, where each receiver antenna experiences a time varying flat
fading or frequency selective channel. Each received channel is therefore
characterized by one or many time varying channel coefficients. We will here
model the channels on linear state space form. The state space model will
be constructed hierarchically, from the modelling of one single channel coef-
ficient, via the modelling of a single receiver antenna and a single user, up
to the whole multi-input system model.

We shall begin by constructing a set of matrices {F, G, J;, Q, R, I} that
characterises the state space. This model may then be used to construct an
optimal observer of the channel coefficients, or we may draw inferences about
different aspects of the system directly from the model.
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4.2.1 Autoregressive modelling

We begin by considering a single channel coefficient, by which we mean either
a tap in an impulse response or the complex-valued scalar channel for a single
subchannel. The behaviour of each coefficient is determined by the local
scattering environment and the velocity of the UE. The channel is sampled
with a sampling rate determined by the period between two consecutive
pilot-bearing OFDM symbols, which we denote t,,.

As described in Section 2.3, a mobile UE will experience fading of the
received signal. The spaced time correlation function of a channel (denoted
A.(At) in Chapter 2) describes the correlation properties of this fading. Al-
though the fading in itself may be rapid, the spaced time correlation function
will generally change only slowly with time. For any short period of time,
a static ARMA model for the fading channel coefficient can be constructed
to well represent the correct fading behaviour [4]. For complexity reasons
it is important to keep the model order low. Since fading channel coeffi-
cients commonly exhibit oscillatory behaviour, autoregressive (AR) models
are suitable. A fading tap h; in the impulse response g; is modelled by

ht + alht,1 + ...+ CLkht,k = Uy, (429)

where k is the model order and wu; is the process noise that excites the process.
The AR parameters {a; }¥_; should be appropriately adjusted according to the
local environment. As briefly discussed in Chapter 1, the AR parameters can
either be estimated based on blocks of measurements, or continuously tracked
with e.g. the LMS method or the RLS method. The noisy measurements
on which the AR parameter estimation is based is here considered to be
prior information. In Chapter 8, we will consider various aspects of AR
parameter estimation on real channel measurements. Among these aspects
is the duration over which a channel may be considered to be static, which
we in the investigated case find to be at least 0.5 seconds.

If no measurements are available, the AR parameters may be assigned
based on less informative prior information. Below, we discuss two types
of AR models that are based on different kinds of prior information. These
models will be used in subsequent chapters.

The first type of AR model discussed here is Jakes” model [52],[37], which
is motivated by the prior information that equally distant and evenly dis-
tributed scatterers surround the moving UE. Jakes’ model attributes the
autocorrelation function

r(r) £ E{hihi .} = Jo(QpT) (4.2.10)

to a fading tap h; in g;. The symbol (-)* denotes complex conjugation.
Here, Jy is the zeroth order Bessel function of the first kind, Qp = 27 fpt,
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is the normalised maximum angular Doppler frequency, and 7 is the time
lag expressed in samples. The Doppler frequency fp is proportional to the
UE velocity v (see Table 2.1 in Chapter 2). To the autocorrelation function
(4.2.10) corresponds the classic U-shaped Doppler spectrum illustrated in
Figure 4.2.

An AR process (4.2.9) of finite order cannot mimic the autocorrelation
(4.2.10) exactly. Instead, the AR parameters need to be fitted in some way
to the desired model. Multiplying (4.2.9) with A, for some integer /; and
taking the expected value, we get

E{hhi . } + arE{hy_1hi_; } + ...+ apE{he_h;_;,} = E{uh; ; } =0,
(4.2.11)
which for [; = 0,...,k — 1 are the Yule-Walker equations [53]. By choosing
a set of integers {lo,ly,...} larger than the model order k, we obtain an
overdetermined set of equations [7]:

Jo(Qp(lo—1)) - Jo(Qp(le — k) [“
T @Qp(h — 1) -+ Jo(Qpli—k) | [©

To(Qnlo)
— — | Jo(Q2plh)

ag

(4.2.12)
The AR parameters {a;}¥_; can then be found from the least squares so-
lution of (4.2.12). The {I/;} are the time lags in the autocorrelation func-
tion (4.2.10) for which the best fit is desired. Figure 4.2 illustrates the
spectrum of an AR4 model fitted to the Jakes autocorrelation for indices
{I:} = {1,51,101,151,...,451}.

Equation (4.2.9) can be written on operator form as

1

hy = U
Tl ag . agg R

(4.2.13)

or by means of the z-transform as

P P
h(z) = u(z) = u(z),
(2) 2k ta 4+ +oag (2) (z—=p1)(z—p2)... (2 —pr) (2)
(4.2.14)
where ¢~! is the backward unit delay operator. Once the parameters {a;}

have been found, the corresponding poles {p;} can be found from (4.2.14).
It should be noted that the matrix in (4.2.12) is in general poorly con-
ditioned which may cause the least squares solution to yield unstable poles.
Such poles should be reflected in the unit circle, so that a stable model is
constructed while preserving the spectral density.
The second type of AR model is a model that is based on less informa-
tive prior information than Jakes’ model. Here, we are ignorant to what the



Chapter 4. Modelling MIMO-OFDMA systems 69

Gain

_5 L I I I I I
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Normalized Doppler frequency

Figure 4.2: Doppler spectra for three different models with normalized Doppler
frequency 2p = 0.1. The solid line is the standard Jakes model. The dashed line
is an AR4 process which has been fitted to ten elements with spacing 50 in the
Jakes autocorrelation function. The dotted line is an AR4 model derived from a
Butterworth filter, yielding a flat Doppler spectrum.

Doppler frequency of the received channel coefficient is, except that it is upper
bounded by the maximum Doppler frequency fp. Based on this ignorance,
we should then assign a Doppler spectrum that attributes the same proba-
bility density to any Doppler frequency in the range [—fp, fp]. AR models
with flat Doppler spectra can be constructed from continuous-time Butter-
worth filters. These have poles evenly distributed over a half-circle with the
“prewarped” radius 2 tan(€2p/2)/t, in the negative half of the complex plane.
Each continuous-time pole p, can then be translated to a discrete-time pole
p. e.g. through the bilinear transform p, = (2/t, + ps)/(2/t, — ps). The flat
Doppler spectrum of a 4th order AR process is shown in Figure 4.2.

Of the two types of AR models presented above, the Jakes type model
will yield the best estimation and prediction performance, since its Doppler
spectrum features strong spectral components that makes it easy to extra-
polate the channel into the future. Even better performance will follow from
a Doppler spectrum with a single strong component, which will sometimes be
the case with on-line AR parameter estimation on real channel measurements.

4.2.2 State space modelling

Once the poles of the AR process have been found, we seek to construct a
state space model

xgi)l = Xx\9 +Yu!?,

(4.2.15)
h = Zx;,
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where hﬁ") is the fading channel coefficient (either in the frequency domain
or in the time domain), ch) is the state vector of length k, where £ is the
model order, and {ugc)} is the process noise? that “drives” the process. The
superscript (-)(C) indicates that we at this point consider modelling of indi-
vidual channel coefficients. The variance of uic), which ultimately dictates
the variance of the coefficient hgc) is uninteresting at this moment — the focus
here is on the time dynamics of hgc).

The matrices {X,Y,Z} may generally be time-varying, but throughout
this chapter we shall assume that they are varying slowly enough that they
may be considered static. In Chapter 8, we will show that channel models
may typically be held static for at least half a second at a time.

As shall be evident later, it is favourable to choose a state space model on
diagonal form, so that X is diagonal. This can be accomplished by putting
the AR poles on the diagonal of X. The elements of X € C** Y ¢ CF*1,
and Z € C** are set as follows [43]:

(4.2.16)

The matrices Y and Z may be rescaled by an arbitrary factor without chang-
ing the fading characteristics of the coefficient hgc). While generally X and Z
both have a reasonable scaling, the elements of Y are often extremely large,
the reason being that poles a frequently located close to the unit circle. It
may therefore be a good idea to normalise Y, e.g. by the magnitude of its
largest element.

Note that, to be consistent with notation used in later models, we use
matrix notation for Y and Z, although they are vectors in the model (4.2.15).

2The process noise {ugc)} is the same as the process {u;} in (4.2.9) except for a time
shift. This time shift does not matter however since the process is white.
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EXAMPLE 4.2.1 Channel coefficient model

Assume that we want to model a fading channel coefficient (i.e. a tap in
an impulse response or the complex-valued scalar channel for a single sub-
channel) experienced by a terminal moving at a speed of 72 km/h. The
coefficient is the sum of a large number of reflections coming from scatter-
ers evenly distributed around the terminal, all at approximately the same
distance. The carrier frequency is f,=3 GHz and the sampling period (the
period between pilot-bearing OFDM symbols) is ¢, = 200us. The model
order is set to k = 2.

The Doppler frequency is here fp = f.v/co=200 Hz, and the normalized
angular Doppler frequency is Qp = 2rwfpt, = 0.2513. The geometry of
the problem motivates a Jakes Doppler spectrum. In the approximating
second order AR model, we choose the poles p; = 0.95exp(j€2p) and py =
0.95 exp(—7€2p), which gives strong emphasis to the maximum Doppler
frequency fp (and its negative counterpart), as does Jakes” model. The
radius 0.95 was chosen arbitrarily but should be close to unity.

According to (4.2.16), we set

~(p1 0 _ [0.9202 + 0.2363; 0
X= (0 p2> - < 0 09202 —02363;) (4217
(pr —p2) ™" —2.1164y
Y = = 4.2.18
((Zb —p)~) "\ 21164 ) (4.2.18)
and
Z=(p p2) = (0.9202+0.2363; 0.9202 — 0.2363) . (4.2.19)

(Note that while Y in many cases may have very large elements, requiring
a normalization, this is not the case here.) A realization of {h\”} from
the state space model xiﬁ?l = Xx\? + Yul?, ¥ = 7x\? is displayed in
Figure 4.3. The complex white noise ugc) was given unit variance. As can
be seen from Figure 4.3, the wavelength is about 0.1 m, as should be since
the carrier frequency is 3 GHz. We also plot the power spectrum, which
exhibit strong peaks at £fp, just like the Jakes spectrum. Note that the
general amplitude of hgc) is high, since the poles are located near the unit
circle. However, scaling is not an issue at this point.
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Figure 4.3: Realization of the one-coefficient state space model.

4.2.3 Multipath channel model

To model the signal coming from one input, we need to model each fad-
ing channel coefficient in that signal. We will consider tracking w parallel
subchannels, over which pilots are transmitted. The ability to track these
subchannels will depend on how correlated they are, which in turn depends
on spacing in frequency and also on the frequency properties — mainly the
coherence bandwidth — of the channel. The parameter w, which henceforth
shall be called the filter width, is a design parameter with which the system
designer can trade off channel estimation performance for complexity. In
Chapters 5 and 6 we shall study how different settings of w affect channel
estimation and prediction performance.

Two different modelling approaches

There are two approaches to modelling the fading channel coefficients. Ei-
ther we use impulse response modelling and model and track the significant
taps in the impulse response, or we use subchannel modelling and model and
track the w parallel subchannels. Which scheme to choose depends on a
number of factors. In a real system, it is generally easier to use subchannel
modelling since that model can be obtained relatively easily from channel
measurements. Using impulse response modelling in a real system, on the
other hand, requires estimating the number, gains, and delays of the signifi-
cant taps in the impulse response, which typically requires the use of subspace
methods for system identification of linear dynamic systems.

Let us denote the number of significant taps in the impulse response by
m. When setting up a model with the purpose of using it for analyzing a
system’s performance, the issue of deciding which modelling method to use
is largely determined by which of the numbers m and w is smallest. As a
rule of thumb, if m < w we would use impulse response modelling. If the
converse is true we would use subchannel modelling. The numerical results
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will be exactly the same, but there are significant computational benefits
to be made by making the appropriate choice. We will in the following use
the integer parameter x to denote either m or w, depending on the method
chosen. Correspondingly, we use the notion channel coefficient to denote a
subchannel or a significant tap in an impulse response, whichever applies.

If impulse response modelling is to be used, we need to assume some
knowledge about the power delay profile of the channel. This knowledge
consists of the delays and the powers of the m distinct taps. It is represented
as two matrices R, and D. The first, R,, is a diagonal m x m matrix with
each diagonal entry representing the power (variance) of a tap. For example,
assuming that the impulse response has three significant and mutually inde-
pendent taps with the respective variances 6 dB, 6 dB, and 3 dB, so that the
total power is 10 dB, we would set R, = diag(4,4,2).

The matrix D has dimensions N x m, where N is the number of samples
in an OFDM symbol, defined so that

g™ = Dh{™ (4.2.20)

time,t?

where hg;)e,t holds the most significant taps in the sampled impulse response
gt(m). The superscript (-)™ indicates that we now consider multipath mod-

elling. The elements of D are given by
D[i,j] = f(its — 75), (4.2.21)

where f(t) is the compound of the transmitter and the receiver pulse shapes,
t, is the system sampling period, and 7; is the delay of the j:th tap in hgﬁl)e’t.
Assuming that f(¢) is a raised cosine pulse and that all {7;} are integer
multiples of t;, D is a sparse matrix containing exactly m ones and zeros
otherwise. For further details on discrete-time channel modelling, see e.g.

[54].

A block-diagonal state-space model

The x channel coefficients (in the time or frequency domain) are modelled
by setting up a block-diagonal state space model®

xgﬁ = diag(X, ..., X)x\" + diag(Y,...,Y)u!™
= Ax!™ 4+ Bu", (4.2.22)
hgm) =7 x diag(Z, ..., Z)xgm) = TCxtm).

Although the state space model (4.2.22) allows different models to be used
for the respective channel coefficients, we will throughout this thesis assume

3For a specification of the involved matrix dimensions, see Appendix 4.H.
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that the same model is employed for all channel coefficients. Since x channel
coeflicients are modelled simultaneously, the state vector xgm) has length? k.
A € CF*F ig diagonal and B € CF** and C € C**** are block diagonal
matrices with x blocks each. Note that the vector Cx; are the x fading co-
efficients. However, since we are interested in modelling the w subchannels,
regardless of whether we use impulse response modelling or subchannel mod-
elling, we introduced a matrix 7 with the purpose of transforming Cx to
the frequency domain, if necessary.

When subchannel modelling is used, no such transform is needed and
we set 7 = I,. When impulse response modelling is employed so that
cx\™ = hﬁﬁ”ﬂe’t, we set 7 = NY2F,D, where F, is the partial Fourier
matrix with elements

Foli,jl = N~V 2msa/N =0, . w—1,j=0,...,N—1, (4.2.23)

where s; is the index for subchannel i. Then, h™ = N'/2F, g™ in accor-
dance with (4.2.7).

For an appropriate scaling of hgm) we need to determine the x-by-x process
noise covariance matrix [[u{™||2 £ L. Let

h, = Cx\™, (4.2.24)

so that either h), = h{™ or h} = hEzL)eJ, depending on the type of mod-
elling. We first need to establishing the channel coefficient covariance matrix
Ry £ ||hj|[%. For impulse response modelling this is simply Ry = R.,. For
subchannel modelling, Ry, can often be estimated directly from noisy mea-
surements of the time-frequency channel, which means that we do not have
any need for the matrices R, and D. Alternatively, R, can be derived from
the time domain information through R, = NF,DR,D*F;.

It is generally non-trivial to calculate the process noise covariance matrix
L from the channel coefficient covariance matrix Ry,. Fortunately, the special
state space structure used here permits us to set L explicitly by using the
following theorem.

Theorem 4.2.1 (Scaling of covariance matrices). Consider a state space
model

(4.2.25)

X1 = Axy + Buy,
h; = CXt, t 2 0,

4The model order may differ between coefficients, so that the length of x("™ is actually
=% 1 ki, where k; is the model order of channel coefficient ¢. For brevity we shall however
denote the length of x("™) as kz. This notational convention is later extended to the system
model, when several users are considered.
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with multivariate circular symmetric complex Gaussian variables {u,xo} such
that

r mr v rary _ (L0 0
S = (50 (12.26)
and matrices {A, B, C} such that
A = diag(a),
B = diag(Y1,...,Y.), (4.2.27)

C =diag(Zy,...,Z,),

where, for some positive integers {ki, ..., k. }, a is a vector of length Y ;| k;
whose complex elements have magnitudes strictly less than one, and where
the {Y;} are column vectors of the respective lengths {k;} and the {Z;} are
row vectors of the same respective lengths {k;}. If, for a positive definite
matrix Ry, we set

L =R, © C(B1B*® (1 —aa*))C", (4.2.28)

where 1 indicates a matriz of appropriate dimensions containing only ones,
and the symbol © indicates element-wise division, and we also set

'y = BLB* 0 (1 — aa®), (4.2.29)

then the model will be stationary, so that the state covariance ||x||* = T'y has
a constant value I' obeying

[ = ATA* + BLB", (4.2.30)

and the covariance matriz for the channel coefficients will be constant with
value Ry :

[hi[1* = Ry (4.2.31)
Proof. Since A = diag(a), it holds that ATA* = aa* ® I' (for any matrix

'), where ® is element-wise multiplication. The solution I' to the Lyapunov
equation (4.2.30) is therefore given by

(1-aa*)®[ =BLB* = = BLB* © (1 —aa"). (4.2.32)

Since I'; = T for all ¢, with [y = T as a special case, the result (4.2.29)
follows.

To derive the result (4.2.28) we partition I into blocks I'; ; so that each
f‘i,j is a k; X k; block, where 1 <4, j < x. We also partition the vector a into
sub-vectors {a;} so that a; is a k;-vector. From (4.2.30), it then holds that

T, =aa oL, +LijY,Y]

3 4.2.33
= Fi,j = L[Z,]]Y}Yv;< @ (]_ — aia;f). ( )
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From (4.2.25), it follows that R;, = CI'C*. We then find the elements of L
from

Ruli, j] = Zo(Lli, j]Y,Y? © (1 — ajal))Z:

Ll = Ruli /(B (Y,Y; 0 (1— ) Z)). 2t

from which the result (4.2.28) follows. O
In accordance with Theorem 4.2.1, we set

L=R, © C(B1B*© (1 —aa"))C", (4.2.35)

where a are the diagonal elements of A. To force model stationarity, we also
set

Ty 2 |x{™|> = BLB* @ (1 — aa®). (4.2.36)
The single-input channel model {A, B, 7C, L, '} now models the kz fading
channel coefficients by means of the state space model (4.2.22), with a white

noise vector u§ ) of dimension z as input.

EXAMPLE 4.2.2 Multipath channel model — modelling in the impulse
response domain

A frequency selective channel is in this example well described by a two-tap
model, i.e. m = 2. Both taps have the same fading behaviour as described
in Example 4.2.1. The second tap has one third of the power of the first tap,
and the delay between the two is 7 — 7o=1 pus. We may assume that the
first tap has delay 79 = 0. The SNR is 10 dB. The system uses square-root
raised cosine pulses with roll-off factor 0 at both transmitter and receiver,
so that the compound pulse shape is a Nyquist pulse [55]. We wish to
model two parallel subchannels, which have separation Af = 80 kHz, by
modelling in the impulse response domain.

First we set A = diag(X,X), B = diag(Y,Y), and C = diag(Z,Z),
with {X,Y,Z} set according to Example 4.2.1.

Then we need to establish the transformation matrix 7 = N'Y/2F,D.
Since the pulses are Nyquist pulses and the Fourier transform of a Nyquist

pulse is a complex sinusoid of finite duration, we have that 7[i, j| = 7,
where w; — wy = 27 Af and we may assume that wy = 0. This means that

1 1 1 1
T: <1 €]w17_1> ~ <1 ej/2> . (4237)

Finally, we need to determine the process noise covariance matrix L.
Since the two taps are modelled in the impulse response domain and the



Chapter 4. Modelling MIMO-OFDMA systems 77

total SNR is 10, we have R, = diag(7.5,2.5) (assuming that the measure-
ment noise has unit power). From (4.2.28), we then find

X wvy v [ 0.08947 0

using Ry = R, and a holding the diagonal elements of A. To make
the model stationary, we can also set the prior state covariance matrix
according to (4.2.29).

Making a realization from the model XETE = Axgm) + Bugm), hEm) =
TCx\™, with [[u{™|]? = L, it is found that the sample variance of each of
the two subchannels in h(™ is close to 10, as we expect. The covariance
between the two should be 7.5 + 2.5¢*1™ as can be seen by studying the
off-diagonal elements in the subchannel covariance matrix 7R,7*. A nu-
merical investigation gives the sample covariance 9.6462 + 1.1960 between
the two subchannels, in close agreement with the theory.

ExaAMPLE 4.2.3 Multipath channel model — modelling in the sub-
channel domain

The SNR in an OFDM system is assumed be 10 dB, and the fading environ-
ment is assumed to be well described by Example 4.2.1. We want to model
two subchannels (w = 2) in this system by modelling in the subchannel
domain. By empirical study, we find the sample covariance between the
two subchannels to be approximately 7.5 + 2.5e%7/2.

Assuming that the measurement noise has unit variance, we have the
subchannel covariance matrix

- 10 7.5+ 2.5¢79/2
R = (7.5 +2.5¢7/2 10 ) , (4.2.39)

and since we here model in the subchannel domain, we have from (4.2.24)
that Ry, = Ry. Coincidentally, the covariance matrix for the subchannels
R used here is the same as the corresponding matrix 7R, 7" in Example
4.2.2. Since we use subchannel domain modelling, the transformation ma-
trix is now 7 = Iy. The process noise covariance L is calculated according
to (4.2.28), and we find

IL_ ( 0.1193 0.1156 — 0.0143;) (4.2.40)

0.1156 + 0.0143y 0.1193
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Making a realization as in Example 4.2.2] we find the sample variance of
both the subchannels to be close to 10, and their sample covariance is
9.6714 + 1.20709, again in close agreement with theory.

4.2.4 Multi-input channel model

The continuation from a single input model to a multi-input model is a simple
matter of augmenting the state space with a third hierarchical block level®:

X1 = diag(Aq, ..., AL)x; + diag(By, ..., B,)u,
£ Fx, + Gu, (4.2.41)
h, = diag(T,C,, ..., T,C,)x, = Hx,.

Assuming independence between the w transmitting antennas, the process
. . . A . A

noise covariance matrix Q = |Jw|?> and the prior Il = ||xo]|*> can be con-

structed accordingly:

Q = diag(Ly,...,L,),

4.2.42
Iy = diag(Ty,...,TW). ( )

The subscripts indicate model matrices for u individual inputs.

Although in most cases the transformation matrices {7;}* ; would be the
same for all inputs, the state space model is general enough to handle different
transformation matrices, so that impulse response modelling may be used
for some inputs and subchannel modelling for others. The model could also
accommodate different numbers of subchannels for different inputs, but we
are here interested in modelling u inputs over the same w subchannels. Note
that although the model matrices are large (F € Crrwxkeu G g Cheuxen H ¢
Cwuxkzu) they are sparse and therefore require a limited amount of memory
for storage.

Finally we model the measurements, in which the fading channel coeffi-
cients are observed in additive white noise through pilot symbols:

Y = (I)tht + v = JtXt + v;. (4243)

Here, J;, = ®;H € C¥*k=u where ®; € C**¥* introduced in (4.2.3), holds
potentially time-varying pilot symbols, and v, is white Gaussian noise with
covariance matrix R £ ||v,||2. By conventionally setting R = I,,, we can in-
terpret T'r(R.,) for an input as that input’s signal-to-noise (and interference)
ratio, where T'r(+) is the matrix trace.

5For a specification of the involved matrix dimensions, see Appendix 4.H.
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In a single input® system, ®; is conveniently chosen as a diagonal matrix

P11
®, = (4.2.44)

d)w,l,t

where the pilot symbols ¢; ;; for subchannel ¢ and input j at time t are
generally complex-valued. In a multi-input system, ®; could either be set up
to assign exclusive pilots to all the inputs (which is often intractable since
it generates an excessive pilot overhead), or to assign pilots to many inputs
simultaneously and at the same subchannels, in which case the pilots will
overlap. We return to this matter in Chapter 6.

We now have a model

X1 = Fx; + Guy,

(4.2.45)
yi = JiXe + vy,
where u, v, and x( are zero-mean Gaussian, white, and
Il v, <t 7|2 = diag(Q, R, Ilp), (4.2.46)

where Q > 0, R > 0, and Il > 0, that accurately models all the kzu
channel coefficients in the system. Appendix 4.H summarizes the dimensions
and structures of all matrices that the model (4.2.45) depends on.

ExAMPLE 4.2.4 MIMO channel model

A terminal receives two inputs, both with fading channels according to
Example 4.2.1. The inputs are both received on two subchannels. These
subchannels have correlation properties as described by Examples 4.2.2 and
4.2.3 (the two examples are identical in this respect). The measured pilot
symbols from the two inputs overlap in time and frequency, but we may
choose the values of the transmitted pilot symbols. We here wish to model
the received noisy signal as measured by the terminal.

For this purpose, we compute {A, B, 7C,L, Ty} as in Example 4.2.2 or
4.2.3 and set the model matrices
F = diag(A, A), G = diag(B,B), H = diag(7C,7C),
Q = dlag(L7L)7 RZI%

SNote that the notion input refers to a data stream from one transmitting antenna
element, received over w subchannels, and that the inputs are here represented by the
matrix ®;. This should be distinguished from the elements in the process noise u;, which
are sometimes referred to as inputs in state-space contexts.
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We also set the prior state covariance matrix Iy = diag(Ty, o) to force
model stationarity.

The total model thus has process noise of dimension xu = 4, kxu = 8
states, zu = 4 channel coefficients, and a measurement signal of dimension
w = 2. It remains to set the pilot symbol matrix ®;, which may be time
varying. The pilot patterns used by the two inputs should be mutually
orthogonal. In a flat fading environment, choosing orthogonal pilot patterns
is adequate to separate the channels for the two inputs completely. Here,
since the channels are frequency selective, it is a good idea to also make
the patterns orthogonal over time for each of the two subchannels. For
example, we could let @, alternate between the two values

101 O 1 0 -1 0
O wa (U FY) uem

With this choice of ®;, the regressor matrix J, = ®;H has period 2. In
Chapter 6, we will see how time-varying pilots can greatly improve channel
estimation and prediction performance when u > w.

4.2.5 A few remarks

Although the model (4.2.45) is quite general, we have made a few restricting
assumptions that one may want to relax.

Rice components

We have throughout this chapter modelled the fading channel as a channel
having zero-mean. The channel impulse response may however have a static
non-zero component, especially in line-of-sight (LLOS) scenarios when a phase
locked loop locks to the LOS component. The static component, say g(®”),
may then be estimated and the corresponding frequency response average
h(@) = N2 F, (@) calculated. The total channel is then hEtOt' = h(@) +h,,
and we model and track the zero-mean component h;.

Antenna coupling

In an nr x np MIMO system, we assumed in the beginning of Section 4.2 that
the ng receiving antennas are uncorrelated. Furthermore, in Section 4.2.4,
we also assumed that the ny transmitting antennas are uncorrelated. How-
ever, due to insufficient antenna separation, electrical coupling, and/or local



Chapter 4. Modelling MIMO-OFDMA systems 81

geometry, antenna correlations may be present at both the transmitting and
the receiving sides of the system.

Theorem 4.2.1, which we used to set the process noise covariance matrix
so as to produce a correct correlation among the modelled channel coeffi-
cients, can be trivially extended to handle correlations among antennas. The
theorem was applied at the multipath modelling level (Section 4.2.3), but
can easily be “moved up” to the multi-input modelling level (Section 4.2.4).
Replace the system model (4.2.25) in the theorem with x;,1 = Fx; + Guy,

h' = diag(Cy, ..., C,)x; and assume that the ngnp-by-ngnr channel coeffi-
cient correlation matrix Ry = [|h}||? has been estimated. Solve for Q = ||u||?
instead of L and Iy = ||x|* instead of Ty. The matrix structures comply

with the theorem also for this larger state space model.

4.3 Channel inference

4.3.1 The Kalman filter recursions

From the total multi-input system model (4.2.41)—(4.2.43), characterized by
matrices {F, G, J;, Q, R, Iy}, we may now infer the unknown fading channel
coefficients by way of the Kalman filter (KF) recursions. See Table 4.1.

In Table 4.1, R, is the covariance matrix for the innovations, and Ky, is
the Kalman filter gain which expresses the tradeoff between taking new mea-
surements into account and relying on old knowledge. The matrix W, = J, P,
is introduced as an intermediate result to make the computations efficient.

The KF does not only calculate point estimates of the state vector x;.
Rather, it produces the full pdf

P(Xt|}’07 e Y ]) = CN(Xt; fim; Pt\t) (4'39)

for the state vector, given as recent measurement as possible. The mean
value of this pdf, X, is called the filtered estimate of x, and is the optimal
estimate given measurements up to time ¢. As a by-product, the KF also
produces the one-step prediction pdf

p(xt|y07 e Y1, I) = CN(Xt; )A(t, Pt), (4310)

which gives the optimal estimate given measurements up to time ¢. Note
that we use, for brevity, the short notation

Xy £ )A(t\t—l and Py £ Pt|t—1- (4-3-11)

The covariance matrix for the state vector x; given measurements up
to and including y;, and the covariance matrix for the state vector x; given
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Table 4.1: The Kalman recursions with numerical complexity for impulse response
modelling (imp. mod. cplx.) and subchannel (subc. mod. cplx.) modelling, re-
spectively, in number of arithmetic complex operations (one operation—=one mul-
tiplication and one addition). The total number of states is n = kzxu, where k is
the model order per channel coefficient, = is either w (filter width) or m (number
of taps in the impulse response), and w is the number of inputs.

initialize:

X0 = 0,Py =1l

iterate:
operation imp. mod. cplx. subc. mod. cplx.
J, =oH nw n (4.3.1)
W, =J,P, n*w n? (4.3.2)
R, =WJ; +R nw?/2 nw /2 (4.3.3)
K = WIR;} nw? +w*/6 nw? +w?/6 (4.3.4)
X =% + Kpo(ye — Ji%e)  nw +nw n + nw (4.3.5)
Py =P — K; W, n*w /2 n*w/2 (4.3.6)
X1 = Fxy n n (4.3.7)
P =FPyF + GQG* n?/2 n?/2 (4.3.8)

measurements up to and including y; 1, are denoted Py, and Py, respectively.
Note that these matrices also constitute the covariance matrices for the state
estimation errors:

p(Xt - f(t\t|y07 e Yt [) = CN(Xt - )A(t\t; 0, Pt\t)a (4-3-12)
p(xe — X¢|yo,- -, ¥e, I) = CN(x; — %450, Py). (4.3.13)

From the state estimate vector we can compute the channel coefficients
estimate by flﬂt = HXy;, which may then be used for channel equalization
or as input to a soft channel decoder. When the KF is employed as an
analyzing tool for assessing different aspects of a system without carrying
out any simulations, the state estimation update equations (4.3.5) and (4.3.7)
should be omitted entirely.

An important property of the KF recursions is that the error covariance
matrices Py; and P; depend only on the model matrices and not on the
measurements {y;}. This means that although we cannot calculate any es-
timates in the absence of measurements, we can calculate the distribution of
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estimates without measurements being present. And more importantly, we
may determine the distribution of errors, i.e. the differences between esti-
mated and true channel coefficients.

The distribution of errors for the channel coefficients in h;, given mea-
surements up to time tg, is zero mean circular symmetric complex Gaussian
with variance, or mean square error (MSE), given by the diagonal elements
of HP,;,,H*. As a measure of quality for channel estimations or predictions,
we will use the normalized mean square errors (NMSE):

vector of NMSE values for hy

GIen yo, .. ., Y,
where @ means element-wise division, diag(M) is a vector holding the diag-
onal elements of the matrix M, and Ry, is the subchannel covariance matrix.

In the above, we have used the general notation Py, in place of Py, to
emphasize that (4.3.14) holds whatever the amount of measurement available,
since the KF recursions can be extended to calculate any error covariance
|5: — et || = Popgo- 1 t > to we have a prediction problem. Prediction error
covariance matrices can be calculated iteratively through

Pt+c+1|t = FPt+c|tF* + G’QG* (4315)

It is straightforward to show that if |[F| < 1, then Py oy — IIp as ¢ —
00, so that the KF “falls back” to a state of maximum ignorance when
measurements become uninformative. When this happens, we see from the
relation Ry, = HII,H* that the NMSE is 0 dB.

When t < t; we have a smoothing problem. Kalman smoothing is not
as straightforward as prediction and there are many variants of smoothing
formulas. In Chapter 3 we briefly presented the so-called Bryson-Frazier for-
mulas for Kalman smoothing. For a comprehensive presentation of Kalman
smoothing, see [49], [56].

= diag(HP,;,,H*) @ diag(R;), (4.3.14)

4.3.2 The periodic filter

We have assumed in (4.2.41)—(4.2.42) that the model matrices {F, G, H, Q, R}
are time-invariant. The matrix F is, by construction, diagonal, with the poles
of the models for the respective channel coefficients as elements. These poles
are chosen to be stable, meaning that the eigenvalues of F' are strictly inside
the unit circle. When also the pilot matrix ®; is static, the KF will set-
tle to a stationary state after a few iterations in the recursions loop, which
means that all covariance matrices in the KF recursions become constant,
see Theorem 4.G.1. It is then convenient to define the stationary covariance
matrices

P,,—P; t— o
oo H b (4.3.16)
P,—P, t—o0
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However, in the system model (4.2.45) we have allowed @, to be time varying.
A special case occurs when @, is periodic with period b. The filter will then
settle to a periodic state, see Appendix 4.G. Analogous to (4.3.16), we may

then define two sets of matrices {Pq,...,Pry_1} and {P,o,...,Pyp1},
each of size b, defined by

Pf’j £ Pib+j|ib+j and PPJ' = Pib+j7 7 2 io (4317)

where j € [0,b), and iy is assumed to be large enough that the filter has
reached a periodic state.

4.3.3 Modelling channel estimates

When analysing any particular communications system, we are interested in
seeing how estimation and prediction errors are distributed, i.e. we want to
calculate their frequency distribution. While a probability density distribu-
tion is not generally the same as a frequency distribution, this equality holds
when the filter is stationary or periodic [43].

ExAMPLE 4.3.1 Filtered estimates model

The UE in Example 4.2.4 uses an optimal filter based on a perfect chan-
nel model to infer the fading MIMO channel. Filtered estimates are used
as channel estimates. We wish to statistically describe and produce such
filtered estimates when the filter operates in a stationary state.

Statistically correct estimates can be produced by calculating a syn-
thetic channel and then running a KF on it, but it is more straight-forward
to use a model for the estimates themselves. First, note that J; from
Example 4.2.4 has period 2. We find the 2-periodic stabilizing solution
{P,0,P,1} by iterating the discrete-time Riccati difference equation

P,,, = FP,F* + GQG* — FPJ;(J,P,J; + R) ' J P,F*  (4.3.18)

a few tim_es. D@ﬁning R&o é_Jopp,gJS + R, RGJ £ leple’{ + R, and

K,o= FPp,oJSR;(I), K, = FPp,lJ’{R;%, we can set up the model for the
one-step predictions (see (3.4.42)),

ktJ’,l = F)A(t + Kp’tmodget (4319)

ye=Jdixi + e (4.3.20)

where t mod 2 is the remainder of division of ¢ by 2, and e; is white with

time-varying covariance matrix R, ;. Filtered channel estimates are then
calculated from the one-step state predictions:

flt\t =H(x + File,tet) (4.3.21)
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The estimation erTors for the ﬁlte{ed estimates are white in time with
covariance matrix HP ;,H*, where P, is given by (4.3.6):

Pji=(I1-P,JR_}J)P,;. (4.3.22)

4.3.4 Optimal channel gain prediction

Consider a single channel coefficient h; in the channel coefficient vector h;.
The squared magnitude channel coefficient, |h;|?, together with the noise
variance, determines the signal-to-noise ratio and has thus a direct bearing
on system performance. It is therefore of interest to predict the squared
magnitude of a channel coefficient rather than its complex value. From basic
statistical theory (see Appendix 4.A and 4.B) we